Myocilin, a causative gene for open-angle glaucoma, encodes a secreted glycoprotein of unknown function. To elucidate its function(s), we produced a stably transfected HEK293 cell line expressing myocilin and compared the expression profiles between the myocilin-expressing cell line and a vector control cell line using Affymetrix GeneChip U133 plus 2.0 array. A significant portion of differentially-expressed genes in the myocilin-expressing cells was associated with cell growth and cell death, suggesting that myocilin may have an important role regulating cell growth/survival..
Myocilin regulates cell proliferation and survival.
Cell line
View SamplesWe sought to determine differences in transcript expression between a cohort of HIV-infected individuals that either developed broadly neutralizing antibodies (bnAb) or did not develop them (control). With the ultimate goal to identify transcripts that are associated with the development of bnAbs that would identify novel pathways that could be targeted in future vaccine strategies to increase the frequency of individuals that develop bnAbs against HIV. Using this approach we identified that Rab11 recycling endosomes, particularly in dysfunctional natural killer cells are associated with the development of HIV-1 bnAbs. Overall design: RNA extracted from peripheral blood mononuclear cells of 95 subjects was subject to RNA-seq for transcriptome analysis comparing individuals that developed HIV-1 broadly neutralizing antibodies to those that did not develop them (control).
RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses.
Specimen part, Disease stage, Subject
View SamplesThe control of mRNA stability plays a central role in regulating gene expression. In metazoans, the earliest stages of development are driven by maternally supplied mRNAs. The degradation of these maternal mRNAs is critical for promoting the maternal-to-zygotic transition of developmental programs, although the underlying mechanisms are poorly understood in vertebrates. Here, we characterized maternal mRNA degradation pathways in zebrafish using a transcriptome analysis and systematic reporter assays. Our data demonstrate that ORFs enriched with uncommon codons promote deadenylation by the CCR4-NOT complex in a translation-dependent manner. This codon-mediated mRNA decay is conditional on the context of the 3' UTR, with long 3' UTRs conferring resistance to deadenylation. These results indicate that the combined effect of codon usage and 3' UTR length determines the stability of maternal mRNAs in zebrafish embryos. Our study thus highlights the codon-mediated mRNA decay as a conserved regulatory mechanism in eukaryotes. Overall design: zebrafish embryonic mRNA profile at 2 different stages (2 hpf and 6 hpf) in wildtype and 3 additional conditions (miR-430 inhibition, RNApol II inhibition and CNOT7 inhibition) at 6 hpf. All experiments are performed as triplicates
Codon Usage and 3' UTR Length Determine Maternal mRNA Stability in Zebrafish.
No sample metadata fields
View Sampleswe determined the contribution of the decapping enzyme Dcp2 to maternal mRNA clearance in zebrafish embryos by overexpressing a dominant-negative form of Dcp2. Overall design: zebrafish embryonic mRNA profile at 6 hpf in mock-inejcted or Dcp2-DN expressing embryos. Experiments are performed as triplicates.
Pervasive yet nonuniform contributions of Dcp2 and Cnot7 to maternal mRNA clearance in zebrafish.
No sample metadata fields
View SamplesAllyl alcohol is a highly toxic industrial chemical used as a synthetic substrate, and as an herbicide in agriculture. It is evident that Allyl alcohol is metabolized by alcohol dehydrogenases (ADH) to the highly toxic Acrolein. Acrolein is a simple unsaturated aldehyde, ubiquitous environmental pollutant, endogenous metabolite and major constituent of cigarette smoke. Acrolein is highly electrophilic in nature and has strong reactivity towards nucleophiles present in cell such as amino acids, proteins and DNA.
Molecular cytotoxicity mechanisms of allyl alcohol (acrolein) in budding yeast.
No sample metadata fields
View SamplesValproic acid (VA) is a small-chain branched fatty acid, widely used as anticonvulsant, and mood stabilizer to treat psychiatric illness. Valproic acid is also known to inhibit the histone deacetylases (HDACs), which makes it as a potent antitumor agent in alone or in combination with other cytotoxic drugs. Beside its conventional activities, valproic acid reported to have much broader, complicated effects and affect many complex physiological processes. However the molecular mechanisms of valproic acid are unclear.
Combined Transcriptomics and Chemical-Genetics Reveal Molecular Mode of Action of Valproic acid, an Anticancer Molecule using Budding Yeast Model.
No sample metadata fields
View SamplesCaspases are cysteine-proteases with key roles in the execution phase of apoptosis. Additional cellular activities, unrelated to cell death seem to be influenced by these enzymes. Identification of genes co-regulated with caspases could help to ascertain new biological roles for these proteases.To identify genes and pathways under the influence of caspase-2 we silenced its expression in U87MG glioblastoma cell line. Transcriptional expression profiles of cells transfected with caspase-2 siRNA or control siRNA were compared.
Transcriptomic analysis unveils correlations between regulative apoptotic caspases and genes of cholesterol homeostasis in human brain.
Cell line, Treatment
View SamplesKP1019 (trans-[tetrachlorobis(1H-indazole) ruthenate(III)]) is a ruthenium complex that exhibited anti-cancer activity in several in vitro and in vivo studies. KP1019 was even efficient against cancer cells that were resistant to other chemotherapeutic agents and thus emerged as a promising anti-cancer drug without dose-limiting cytotoxicity. However, the molecular mechanisms of its action are elusive.
A systematic assessment of chemical, genetic, and epigenetic factors influencing the activity of anticancer drug KP1019 (FFC14A).
No sample metadata fields
View SamplesEctopic expression of DNMT3L in Drosophila causes melanotic tumor in the transgenic flies from fifth generation onwards.
DNMT3L enables accumulation and inheritance of epimutations in transgenic Drosophila.
Specimen part
View SamplesIn Saccharomyces cerevisiae, Sen1 is a 252-kDa, nuclear superfamily-1 RNA/DNA helicase that encoded by an essential gene SEN1 (Senataxin). It is an important component of the Nrd1p-Nab3p-Sen1p (NRD1) complex that regulates the transcriptional termination of most non-coding and some coding transcripts at RNA polymerase pause sites. Sen1 specifically interacts with Rnt1p (RNase III), an endoribonuclease, and with Rpb1p (Rpo21p), a subunit of RNA polymerase II, through its N-terminal domain (NTD), which is a critical element of the RNA-processing machinery. Moreover, mutations in the N-terminal tail of SETX, a human ortholog of yeast Senataxin (Sen1) reported in neurological disorders.
Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae.
No sample metadata fields
View Samples