The mitochondrial respiratory chain is composed of lipoprotein complexes imbedded in the inner mitochondrial membrane. This chain of enzymes transfers electrons from NADH and FADH2, provided from divers metabolic pathways, to oxygen. It couples the transfer of electrons to the translocation of protons across the membrane. Several clinical syndromes have been associated with respiratory dysfunction caused by mitochondrial or nuclear mutations. A number of mutations in the mitochondrial genes encoding for cytochrome b (CYTB) and cytochrome oxidase (COX 1, 2 and 3) have been linked with diseases. We are using yeast mutants to characterize the deleterious effect of mutations reported in patients on the assembly and catalytic properties of the affected enzymes, and to study the impact of mutations in nuclear genes, such as OXA1, encoding for factors required for the assembly of the respiratory complexes. In this work, we monitored the effects of the mutations causing respiratory defect on the whole genome expression. We compared the change in gene expression in rho0 cells (with a complete deletion of the mitochondrial genome, and by consequence without respiratory chain), in cells with either a single defective enzyme or several, and in cells after prolonged treatment with the bc1 inhibitors myxothiazol or antimycin. The impact of the mutations on the respiratory function ranged from mild to severe. The expression of approx. 350 genes was changed in at least one mutant. Cluster analysis was performed using the Cluster program (Eisen, 1998, PNAS 95:14863). Four groups of genes were studied in more details: Group A, the most repressed genes; Group B, the most over-expressed genes; Group C, genes more repressed in rho0 and Doxa1 cells; and Group D, genes more over-expressed in Doxa1.
Multiple defects in the respiratory chain lead to the repression of genes encoding components of the respiratory chain and TCA cycle enzymes.
Compound
View SamplesWe compared 22 primary Pca (hormone-dependent) versus 29 metastatic Pca (CRPC). The expression of genes related to cell cycle, proliferation, DNA synthesis, and androgen metablism are significantly increased in CRPC group. The expression of AR-stimulated genes were partially reactivated.
ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparing Platforms for Messenger RNA Expression Profiling of Archival Formalin-Fixed, Paraffin-Embedded Tissues.
Specimen part, Disease
View SamplesTo study feasibility of gene expression profiling from FFPE tissues using NuGen amplified mRNA hybridized on Affymetrix GeneChip Human Gene 1.0 ST arrays, we designed a pilot study utilizing samples from prostate cancer cohort. We selected samples from large-scale epidemiologic studies and clinical trials representative of a wide variety of fixation times, block ages and block storage conditions.
Comparing Platforms for Messenger RNA Expression Profiling of Archival Formalin-Fixed, Paraffin-Embedded Tissues.
Specimen part
View SamplesTo study feasibility of gene expression profiling from FFPE tissues using NuGen amplified mRNA hybridized on Affymetrix GeneChip Human Gene 1.0 ST arrays, we designed a pilot study utilizing samples from prostate cancer cohort. We selected samples from large-scale epidemiologic studies and clinical trials representative of a wide variety of fixation times, block ages and block storage conditions.
Comparing Platforms for Messenger RNA Expression Profiling of Archival Formalin-Fixed, Paraffin-Embedded Tissues.
Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.
Specimen part, Cell line, Treatment
View SamplesChromosomal rearrangements involving ETS factors, ERG and ETV1, occur frequently in prostate cancer. We here examine human prostate cancer cells control VCaP and LNCaP cells with ERG- or ETV1-silenced VCaP or LNCaP cells, respectively, in hormone deprived and stimulated conditions.
ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.
Specimen part, Cell line, Treatment
View SamplesChromosomal rearrangements involving ETS factors, ERG and ETV1, occur frequently in prostate cancer. We here examine human prostate non-tumorigenic RWPE-1 cells with ERG- or ETV1-expressing stable RWPE-1 cell.
ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.
Specimen part, Cell line
View SamplesChromosomal rearrangements involving ETS factors, ERG and ETV1, occur frequently in prostate cancer. We here examine mouse prostate cells from WT mice with s with T-ETV1 mice, which contains express the truncated human ETV1 under the endogenous Tmprss2 promoter. ETV1 expression can be tracked by GFP expression.
ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients.
Specimen part
View SamplesMice knocked-out or wild type for the NAPE PLD gene specifically in adipose tissue, were recruited for this expression profiling experiment. Each group of mice (WT versus cKO) were fed with a control diet or a high fat diet. Then mice were sacrificed and adipose tissue samples form the subcutaneous adipose tissue were processed for RNA extraction. Total RNA of each sample was then pooled with those of the same group and treatment for microarray hybridization.
Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota.
Age, Specimen part
View Samples