Distinct shaping of the upper versus lower facial skeleton is essential for function of the vertebrate jaw and middle ear, yet the cellular mechanisms by which this occurs have remained unclear. Here, we show that Endothelin1 (Edn1) signaling accelerates mesenchymal condensation and subsequent cartilage formation in the lower face through antagonism of Jagged-Notch signaling and Prrx1 transcription factors. A genomic analysis of facial skeletal precursors in mutants and overexpression embryos reveals that Jagged-Notch signaling represses genes that are strongly induced as pharyngeal arch neural crest-derived cells begin skeletal differentiation. In wild types, initial Jagged-Notch repression dorsally ensures that barx1+ condensations and cartilage differentiation occur first in ventral-intermediate zones of the pharyngeal arches. Reduced Jagged-Notch signaling results in an expansion of pre-cartilage condensations in the upper face, with loss of barx1 partially restoring dorsal cartilage shapes in jag1b mutants. Further, by studying new mutants for zebrafish prrx1a and prrx1b, we find that Prrx1 genes function in parallel to Jagged-Notch signaling to restrict the formation of dorsal barx1+ pre-cartilage condensations. Consistently, combined losses of jag1b and prrx1a/b robustly rescue ventral barx1+ condensations and lower facial cartilage development in edn1 mutants. Together, our work suggests that Edn1 works through parallel inhibition of Jagged-Notch and Prrx1 pathways to promote an earlier and more extensive establishment of cartilage condensations in the lower face. Overall design: We performed RNAseq on FACS-sorted neural crest-derived pharyngeal arch cells (fli1a:GFP; sox10:DsRed double positive) from wild-type embryos at 3 different stages (20, 28, and 36 hours post fertilization) and embryos with altered levels of Edn1 and Notch signaling (edn1 mutants and hsp70I:Gal4; UAS:Edn1 transgenics; jag1b mutants, dibenzazepine-treated embryos, and hsp70I:Gal4; UAS:NICD transgenics. We also sequenced RNA from heat-shocked UAS:Edn1+ and hsp70I:Gal4+ transgenics and jag1b+/+ controls.
Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face.
No sample metadata fields
View SamplesPrimary human foreskin fibroblasts (HFF) were infected with wild-type simplex virus 1 (HSV-1) strain 17 at a multiplicity of infection (MOI) of 10. Ribosome profiling was performed at various times during infection with minor modification to the protocol described in Stern-Ginossar N et al., Science 2012 Overall design: Ribosome profiling was performed a 0, 1, 2, 4, 6 and 8 h post infection. Two biological replicates were analysed.
Widespread disruption of host transcription termination in HSV-1 infection.
No sample metadata fields
View SamplesThe oviducts contain high grade serous cancer precursors, which are -H2AXp and p53 mutation positive. Secretory cell outgrowths (SCOUTs) are associated with older age and serous cancer. We evaluated PAX2 expression in proliferating oviductal cells, normal mucosa, SCOUTs, Walthard cell nests, STINs and HGSCs. Non-ciliated cells in normal mucosa were PAX2 positive but became PAX2 negative in multilayered epithelium. PAX2 negative SCOUTs fell into two groups; Type I were secretory or secretory/ciliated with a tubal phenotype and were ALDH1 negative. Type II displayed a columnar to pseudostratified phenotype, with an EZH2,ALDH1, -catenin, Stathmin, LEF1, RCN1 and RUNX2 expression signature . This study, for the first time, links PAX2 negative with proliferating fetal and adult oviductal cells undergoing basal and ciliated differentiation and shows that this expression state is maintained in SCOUTs, STINs and HGSCs. All three entities can demonstrate a consistent perturbation of genes involved in potential tumor suppressor gene silencing (EZH2), transcriptional regulation (LEF1), regulation of differentiation (RUNX2) calcium binding (RCN1) and oncogenesis (Stathmin). This shared expression signature between benign and neoplastic entities links normal progenitor cell expansion to abnormal and neoplastic outgrowth in the oviduct and exposes a common pathway that could be a target of early prevention.
The PAX2-null immunophenotype defines multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium.
Sex, Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection.
Specimen part
View SamplesThe extent of lung regeneration following catastrophic damage and the potential role of adult stem cells in such a process remains obscure. Sublethal infection of mice with an H1N1 influenza virus related to that of the 1918 pandemic triggers massive airway damage followed by apparent regeneration. We show here that p63-expressing stem cells in the bronchiolar epithelium undergo rapid proliferation after infection and radiate to interbronchiolar regions of alveolar ablation. Once there, these cells assemble into discrete, Krt5+ pods and initiate expression of markers typical of alveoli. Gene expression profiles of these pods suggest that they are intermediates in the reconstitution of the alveolar-capillary network eradicated by viral infection. The dynamics of this p63-expressing stem cell in lung regeneration mirrors our parallel findings that defined pedigrees of human distal airway stem cells assemble alveoli-like structures in vitro and suggests new therapeutic avenues to acute and chronic airway disease.
Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection.
No sample metadata fields
View SamplesCD8+ T cells and NK cells protect from viral infections by killing virally-infected cells and secreting interferon-g. Several inhibitory receptors limit the magnitude and duration of these anti-viral responses.
The Inhibitory Receptor NKG2A Sustains Virus-Specific CD8⁺ T Cells in Response to a Lethal Poxvirus Infection.
No sample metadata fields
View SamplesMost epithelial ovarian cancers are thought to arise from different cells in the ovarian or fallopian tube epithelium. We hypothesized that these distinct cells-of-origin may play a role in determining ovarian tumor phenotype and also could inform the molecular classification of ovarian cancer. To test this hypothesis, we developed new methods to isolate and culture paired normal human ovarian (OV) and fallopian tube (FT) epithelial cells from multiple donors without cancer and identified a cell-of-origin gene expression signature that distinguished these cell types within the same patient. Application of the OV versus FT cell-of-origin gene signature to gene expression profiles of primary ovarian cancers permitted identification of distinct OV and FT-like subgroups among these cancers. Importantly, the normal FT-like tumor classification correlated with a significantly worse disease-free survival. This work describes a new experimental method for culture of normal human OV and FT epithelial cells from the same patient. These findings provide new evidence that cell-of-origin is an important source of ovarian tumor heterogeneity and the associated differences in tumor phenotype.
Gene expression signature of normal cell-of-origin predicts ovarian tumor outcomes.
Subject
View SamplesHigh-grade serous ovarian cancer (HGSOC) progresses to advanced stages without symptoms and the 5-year survival rate is a dismal 30%. Recent studies of ovaries and oviducts in patients with BRCA mutations revealed that premalignant HGSC is found almost exclusively in the fallopian tube. To validate this notion, we cloned and transformed the fallopian tube stem cells (FTSC). We demonstrated that the tumors derived from the transformed fallopian tube stem cells (FTSCt) share the similar histological and molecular feature of high-grade serous cancer. In addition, a whole-genome transcriptome analysis comparing between FTSC, immortalized fallopian tube stem cells (FTSCi), and FTSCt showing a clear molecular progression, which is mimicked by the gene expression comparison between laser captured normal oviducts and HGSOC ( cancer and paired normal samples from 10 patients).
In vitro and in vivo correlates of physiological and neoplastic human Fallopian tube stem cells.
Specimen part, Disease
View SamplesHigh-grade serous cancer (HGSC) progresses to advanced stages without symptoms and the 5-year survival rate is a dismal 30%. Recent studies of ovaries and fallopian tubes in patients with BRCA mutations revealed that pre-metastatic HGSC is found almost exclusively in the fallopian tube in a lesion termed serous tubal intraepithelial carcinoma or STIC. We have performed laser captured microdissection (LCM) of normal oviduct, STIC and invasive serous cancer from each patient. A whole-genome transcriptome analysis comparing between normal oviduct, STIC and invasive serous cancer were performed. We demonstrated a clear molecular progression from normal to STIC, which shared the gene expression patterns with invasive serous cancer, suggesting a new set of genes as basis of novel detection and therapeutic approaches to HGSC at its earliest stage.
In vitro and in vivo correlates of physiological and neoplastic human Fallopian tube stem cells.
Specimen part
View SamplesIf the fallopian tube is the origin of serous cancer, one possible mechanism for the evolution of cancer is a dysregulation of indigenous stem cells. We therefore set out to clone the stem cells of the human fallopian tube using methods to clone columnar epithelial stem cells such as human intestinal stem cells. Using this method, we were able to generate clones of fallopian tube stem cells that contain many small, undifferentiated cells. These stem cell clones show strong and consistent staining with markers of fallopian tube epithelial cells (PAX8). We also established an air-liquid interface culture system to differentiate fallopian tube stem cell to both ciliated cells and non-ciliated cells.
In vitro and in vivo correlates of physiological and neoplastic human Fallopian tube stem cells.
Specimen part
View Samples