Description
Most epithelial ovarian cancers are thought to arise from different cells in the ovarian or fallopian tube epithelium. We hypothesized that these distinct cells-of-origin may play a role in determining ovarian tumor phenotype and also could inform the molecular classification of ovarian cancer. To test this hypothesis, we developed new methods to isolate and culture paired normal human ovarian (OV) and fallopian tube (FT) epithelial cells from multiple donors without cancer and identified a cell-of-origin gene expression signature that distinguished these cell types within the same patient. Application of the OV versus FT cell-of-origin gene signature to gene expression profiles of primary ovarian cancers permitted identification of distinct OV and FT-like subgroups among these cancers. Importantly, the normal FT-like tumor classification correlated with a significantly worse disease-free survival. This work describes a new experimental method for culture of normal human OV and FT epithelial cells from the same patient. These findings provide new evidence that cell-of-origin is an important source of ovarian tumor heterogeneity and the associated differences in tumor phenotype.