Characterization of differential gene expression due to cisplatin resistance in human ovarian cancer spheroids by microarray analysis.
Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors.
Specimen part, Cell line
View SamplesOsteosarcoma (OS) is one of the most aggressive bone malignancy. Sub-optimal therapy has irretrievably compromised chances of survival of OS patients for years. Also lack of extensive research on this rare disease has hindered its therapeutic development. Cisplatin (CDDP) is an integral part of current treatment regime for OS. However, despite the proven benefits of CDDP, acquisition of resistance impedes therapy. Also, the molecular effects post CDDP insult in OS cells is poorly understood. Hence, we characterized molecular alterations associated with CDDP-exposure and resistance in OS cells. Resistance to CDDP in OS cells was developed and deep sequencing of mRNA was performed. It depicted an altered transcriptomic signature of resistant cells with enrichment of pathways regulating proliferation. Overall, a significant up-regulation of coding-RNAs and down-regulation of non-coding-RNAs were obtained. Further, analysis of immediate effect of CDDP-shock showed an increase in autophagy and JNK signaling, acting as a pro-survival strategy. Regulatory connections between MAPK signaling and autophagy favoring survival under CDDP-shock was elucidated. Taken together, this is the first study portraying not only global transcriptomic alterations in resistant OS cells but also showing key molecular changes associated with CDDP-insult in OS cells. Our results can be better utilized for future therapeutic benefit. Overall design: We analyzed 5 samples, each being the representative of stages in the acquisition of chemoresistance. Control was the parental HOS cell line with which other comparisons are/will be made in future.
Transcriptomic analysis associated with reversal of cisplatin sensitivity in drug resistant osteosarcoma cells after a drug holiday.
Specimen part, Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma.
Specimen part, Cell line
View SamplesSorafenib is the only approved targeted drug for hepatocellular carcinoma (HCC), but its effect on patients survival gain is limited and varies over a wide range depending on patho-genetic conditions. Thus, enhancing the efficacy of sorafenib and finding a reliable predictive biomarker are crucuial to achieve efficient control of HCCs. In this study, we employed a systems approach by combining transcriptome analysis of the mRNA changes in HCC cell lines in response to sorafenib with network analysis to investigate the action and resistance mechanism of sorafenib. Gene ontology and gene set analysis revealed that proteotoxic stress and apoptosis modules are activated in the presence of sorafenib. Further analysis of the endoplasmic reticulum (ER) stress network model combined with in vitro experiments showed that introducing an additional stress by treating the orally active protein disulfide isomerase (PDI) inhibitor (PACMA 31) can synergistically increase the efficacy of sorafenib in vitro and in vivo, which was confirmed using a mouse xenograft model. We also found that HCC patients with high PDI expression show resistance to sorafenib and poor clinical outcomes, compared to the low PDI expression group. These results suggest that PDI is a promising therapeutic target for enhancing the efficacy of sorafenib and can also be a biomarker for predicting sorafenib responsiveness.
Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma.
Specimen part, Cell line
View SamplesSorafenib is the only approved targeted drug for hepatocellular carcinoma (HCC), but its effect on patients survival gain is limited and varies over a wide range depending on patho-genetic conditions. Thus, enhancing the efficacy of sorafenib and finding a reliable predictive biomarker are crucuial to achieve efficient control of HCCs. In this study, we employed a systems approach by combining transcriptome analysis of the mRNA changes in HCC cell lines in response to sorafenib with network analysis to investigate the action and resistance mechanism of sorafenib. Gene ontology and gene set analysis revealed that proteotoxic stress and apoptosis modules are activated in the presence of sorafenib. Further analysis of the endoplasmic reticulum (ER) stress network model combined with in vitro experiments showed that introducing an additional stress by treating the orally active protein disulfide isomerase (PDI) inhibitor (PACMA 31) can synergistically increase the efficacy of sorafenib in vitro and in vivo, which was confirmed using a mouse xenograft model. We also found that HCC patients with high PDI expression show resistance to sorafenib and poor clinical outcomes, compared to the low PDI expression group. These results suggest that PDI is a promising therapeutic target for enhancing the efficacy of sorafenib and can also be a biomarker for predicting sorafenib responsiveness.
Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma.
Specimen part, Cell line
View SamplesSorafenib is the only approved targeted drug for hepatocellular carcinoma (HCC), but its effect on patients survival gain is limited and varies over a wide range depending on patho-genetic conditions. Thus, enhancing the efficacy of sorafenib and finding a reliable predictive biomarker are crucuial to achieve efficient control of HCCs. In this study, we employed a systems approach by combining transcriptome analysis of the mRNA changes in HCC cell lines in response to sorafenib with network analysis to investigate the action and resistance mechanism of sorafenib. Gene ontology and gene set analysis revealed that proteotoxic stress and apoptosis modules are activated in the presence of sorafenib. Further analysis of the endoplasmic reticulum (ER) stress network model combined with in vitro experiments showed that introducing an additional stress by treating the orally active protein disulfide isomerase (PDI) inhibitor (PACMA 31) can synergistically increase the efficacy of sorafenib in vitro and in vivo, which was confirmed using a mouse xenograft model. We also found that HCC patients with high PDI expression show resistance to sorafenib and poor clinical outcomes, compared to the low PDI expression group. These results suggest that PDI is a promising therapeutic target for enhancing the efficacy of sorafenib and can also be a biomarker for predicting sorafenib responsiveness.
Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma.
Specimen part, Cell line
View SamplesMononuclear phagocytes (MPs), including monocytes and macrophages, play complex roles in the pathogenesis of age-related macular degeneration (AMD). We aimed to perform global transcriptome analysis on monocytes from AMD patients to obtain additional insight to the role of MPs in AMD. Peripheral blood was taken from treatment-nave neovascular AMD (nvAMD) patients (n=14), and age-matched controls (n=15). Peripheral blood mononuclear cells (PBMCs) were separated and monocytes were isolated via negative selection. Gene expression was evaluated with Affymetrix Gene1.0 ST microarrays. Statistical/bioinformatics analysis was performed using open sourceware programs.
Transcriptome Analysis on Monocytes from Patients with Neovascular Age-Related Macular Degeneration.
Specimen part, Disease, Disease stage
View Samples1. To identify potential effectors responsible for anti-tumorigenesis by targeting PLD1, we performed microarray in two Wnt-relevant colon cancer cells and analyzed transcriptional profile of genes that were differently expressed by inhibition and knockdown of PLD1
Targeting phospholipase D1 attenuates intestinal tumorigenesis by controlling β-catenin signaling in cancer-initiating cells.
Specimen part, Cell line
View SamplesMemory stabilization after learning requires transcriptional and translational regulations in the brain, yet the temporal molecular changes following learning have not been explored at the genomic scale. We here employed ribosome profiling and RNA sequencing to quantify the translational status and transcript levels in mouse hippocampus following contextual fear conditioning. We identified 104 genes that are dynamically regulated. Intriguingly, our analysis revealed novel repressive regulations in the hippocampus: translational suppression of ribosomal protein-coding genes at basal state; learning-induced early translational repression of specific genes; and late persistent suppression of a subset of genes via inhibition of ESR1/ERa signaling. Further behavioral analyses revealed that Nrsn1, one of the newly identified genes undergoing rapid translational repression, can act as a memory suppressor gene. This study unveils the yet unappreciated importance of gene repression mechanisms in memory formation. Overall design: The application of ribosome profiling and RNA-seq techniques to mouse hippocampi tissues after contextual fear conditioning and to mouse hippocampal primary cultures. Mouse ESCs were also examined.
Multiple repressive mechanisms in the hippocampus during memory formation.
No sample metadata fields
View SamplesIn Arabidopsis, jasmonate is required for stamen and pollen maturation. Mutants deficient in jasmonate synthesis, such as opr3, are male-sterile but become fertile when jasmonate is applied to developing flower buds. We have used ATH1 oligonucleotide arrays to follow gene expression in opr3 stamens for 22 hours following jasmonate treatment. In these experiments, a total of 821 genes were specifically induced by jasmonate and 480 repressed. Comparisons with data from previous studies indicate that these genes constitute a stamen-specific jasmonate transcriptome, with a large proportion (70%) of the genes expressed in the sporophytic tissue but not in the pollen. Bioinformatics tools allowed us to associate many of the induced genes with metabolic pathways that are likely up-regulated during jasmonate-induced maturation. Our pathway analysis led to the identification of specific genes within larger families of homologues that apparently encode stamen-specific isozymes. Extensive additional analysis of our dataset identified 13 transcription factors that may be key regulators of the stamen maturation processes triggered by jasmonate. Two of these transcription factors, MYB21 and MYB24, are the only members of subgroup 19 of the R2R3 family of MYB proteins. A myb21 mutant obtained by reverse genetics exhibited shorter anther filaments, delayed anther dehiscence and greatly reduced male fertility. A myb24 mutant was phenotypically wild type, but production of a myb21myb24 double mutant indicated that introduction of the myb24 mutation exacerbated all three aspects of the myb21 phenotype. Exogenous jasmonate could not restore fertility to myb21 or myb21myb24 mutant plants. Together with the data from transcriptional profiling, these results indicate that MYB21 and MYB24 are induced by jasmonate and mediate important aspects of the jasmonate response during stamen development.
Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling.
No sample metadata fields
View Samples