This SuperSeries is composed of the SubSeries listed below.
Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.
Specimen part
View SamplesNanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with mouse (m) Nanog and human (h) Nanog. Global gene expression in resulting iPS cells was compared to embryonic stem (ES) cells and nanog null NS cells.
Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.
Specimen part
View SamplesNanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with chick (c) and zebrafish (z) Nanog orthologs. Global gene expression was compared to iPS cells derived with mouse (m) Nanog.
Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.
Specimen part
View SamplesEffect of high fat diet feeding on gene expression
Subtle metabolic and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-resistant mice.
Sex, Age, Specimen part, Subject
View SamplesEffects of hyperglycaemia and genetic background differences on gene expression in rats
No associated publication
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesArterial and venous endothelial cells exhibit distinct molecular characteristics at early developmental stages. These lineage-specific molecular programs are instructive to the development of distinct vascular architectures and physiological conditions of arteries and veins, but their roles in angiogenesis remain unexplored. Here, we show that the caudal vein plexus in zebrafish forms by endothelial cell sprouting, migration and anastomosis, providing a venous-specific angiogenesis model. Using this model, we identified a novel compound, aplexone, which effectively suppresses venous, but not arterial, angiogenesis. Multiple lines of evidence indicate that aplexone differentially regulates arteriovenous angiogenesis by targeting the HMG-CoA reductase (HMGCR) pathway. Treatment with aplexone affects the transcription of enzymes in the HMGCR pathway and reduces cellular cholesterol levels. Injecting mevalonate, a metabolic product of HMGCR, reverses the inhibitory effect of aplexone on venous angiogenesis. In addition, aplexone treatment inhibits protein prenylation and blocking the activity of geranylgeranyl transferase induces a venous angiogenesis phenotype resembling that observed in aplexone-treated embryos. Furthermore, endothelial cells of venous origin have higher levels of proteins requiring geranylgeranylation than arterial endothelial cells and inhibiting the activity of Rac or Rho Kinase effectively reduces the migration of venous, but not arterial, endothelial cells. Taken together, our findings indicate that angiogenesis is differentially regulated by the HMGCR pathway via an arteriovenousdependent requirement for protein prenylation in zebrafish and human endothelial cells.
Aplexone Targets the HMG-CoA Reductase Pathway and Differentially Regulates Arteriovenous Angiogenesis
Compound
View SamplesThis SuperSeries is composed of the SubSeries listed below.
JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of naive pluripotency.
Sex, Specimen part, Treatment
View SamplesThis microarray was performed to gain insight in the effect of GY118F stimulation in EpiSCs. This array is part of the following paper to be published in Nature Communications: JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of nave pluripotency by Anouk L. van Oosten, Yael Costa, Austin Smith & Jos C.R. Silva
JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of naive pluripotency.
Specimen part, Treatment
View SamplesThis microarray was performed to gain insight in the downstream targets of GY118F in iPS cells. This array is part of the following paper to be published in Nature Communications: JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of nave pluripotency by Anouk L. van Oosten, Yael Costa, Austin Smith & Jos C.R. Silva
JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of naive pluripotency.
Sex, Specimen part, Treatment
View SamplesBreast cancer (BRC) is the most invasive cancer in women. Although the survival rate of BRC is gradually increasing due to improved screening systems, development of novel therapeutic targets for inhibition of BRC proliferation, metastasis and recurrence have been constantly needed. Thus, in this study, we identified overexpression of SETDB1, a histone methyltransferase, in RNA-seq data of BRC derived from TCGA portal. In Gene Ontology (GO) analysis, cell migration-related GO terms were enriched, and we confirmed down-regulation of cell migration/invasion and alteration of EMT /MET markers after knockdown of SETDB1. Moreover, gene network analysis showed that SMAD7 expression is regulated by SETDB1 levels, indicating that up-regulation of SMAD7 by SETDB1 knockdown inhibited BRC metastasis. Therefore, development of SETDB1 inhibitors and functional studies may help develop more effective clinical guidelines for BRC treatment
No associated publication
Sex, Age, Specimen part, Disease, Cell line, Treatment
View Samples