Investigation of interacting effects of TB and IFN-g on gene expression regulation within human macrophage-like THP-1 cells
No associated publication
Specimen part
View SamplesThe clear benefits of ischemic preconditioning (IPC) in reducing ischemia reperfusion injury (IRI) remain indistinct in human liver transplantation.
No associated publication
Specimen part
View SamplesAlthough increased vascular stiffness is more prominent in aging males than females, and males are more prone to vascular disease with aging, no study has investigated the genes potentially responsible for gender differences in vascular aging. We tested the hypothesis that the transcriptional adaptation to aging differs in males and females using a monkey model, which is not only physiologically and phylogenetically closer to humans than the more commonly studied rodent models, but also is not afflicted with the most common forms of vascular disease that accompany the aging process in humans, e.g., atherosclerosis, hypertension, and diabetes. Gene expressions of monkey aorta from four groups (YF, OF, YM, OM) were detected to find out the molecular mechanism of aorta stiffness.
No associated publication
No sample metadata fields
View SamplesAplidin (plitidepsin) is a novel marine-derived antitumor agent presently undergoing phase II clinical trials in hematological malignancies and solid tumors. Lack of bone marrow toxicity has encouraged further development of this drug for treatment of leukemia and lymphoma. Multiple signaling pathways have been shown to be involved in Aplidin-induced apoptosis and cell cycle arrest in G1 and G2 phase. However, the exact mechanism(s) of Aplidin action remains to be elucidated. Here we demonstrate that mitochondria-associated or -localized processes are the potential cellular targets of Aplidin. Whole genome gene-expression profiling (GEP) revealed that fatty acid metabolism, sterol biosynthesis and energy metabolism, including the tricarboxylic acid cycle and ATP synthesis are affected by Aplidin treatment. Moreover, mutant MOLT-4, human leukemia cells lacking functional mitochondria, were found to be resistant to Aplidin. Cytosine arabinoside (araC), which also generates oxidative stress but does not affect the ATP pool, showed synergism with Aplidin in our leukemia and lymphoma models in vitro and in vivo. These studies provide new insights into the mechanism of action of Aplidin. The efficacy of the combination of Aplidin and araC is currently being evaluated in clinical phase I/II program for the treatment of patients with relapsed leukemia and high-grade lymphoma.
Aplidin synergizes with cytosine arabinoside: functional relevance of mitochondria in Aplidin-induced cytotoxicity.
No sample metadata fields
View SamplesCarcinoma associated fibroblasts (CAFs) have recently been implicated in important aspects of epithelial solid tumor biology such as neoplastic progression, tumor growth, angiogenesis, and metastasis. However, neither the source of CAFs nor the differences between CAFs and fibroblasts from non-neoplastic tissue have been well defined. In this study we demonstrate that human bone marrow-derived mesenchymal stem cells (hMSCs) exposed to tumor-conditioned medium (TCM) over a prolonged period of time assume a CAF-like myofibroblastic phenotype. More importantly, these cells exhibit functional properties of CAFs including sustained expression of stromal derived factor 1 (SDF-1) and the ability to promote tumor cell growth both in vitro and in an in vivo co-implantation model and expression of myofibroblast markers including -smooth muscle actin and fibroblast surface protein. hMSCs induced to differentiate to a myofibroblast-like phenotype using 5-azacytidine do not promote tumor cells growth as efficiently as hMSCs cultured in tumor-conditioned medium nor do they demonstrate increased SDF-1 expression. Furthermore, gene expression profiling revealed similarities between TCM exposed hMSCs and carcinoma associated fibroblasts. Taken together these data suggest that hMSCs are a source of carcinoma associated fibroblasts and can be used in the modeling of tumor-stroma interactions. To our knowledge this is the first report demonstrating that hMSCs become activated and resemble carcinoma associated myofibroblasts upon prolonged exposure to conditioned medium from MDAMB231 human breast cancer cells.
Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells.
No sample metadata fields
View SamplesMediator complex is an integrative hub for transcriptional regulation. Here we show that Mediator regulates alternative mRNA processing via its Med23 subunit. Combining tandem affinity purification and mass spectrometry, we identified a number of mRNA processing factors that bind to a soluble recombinant Mediator subunit MED23 but not to several other Mediator components. One of these factors, hnRNP L, specifically interacts with MED23 in vitro and in vivo. Consistently, Mediator partially colocalizes with hnRNP L and the splicing machinery in the cell. Functionally Med23 regulates a subset of hnRNP L-targeted alternative splicing (AS) and alternative cleavage and polyadenylation (APA) events as shown by minigene reporters and exon array analysis. ChIP-seq analysis revealed that Med23 can regulate hnRNP L occupancy at their co-regulated genes. Taken together, these results demonstrate a crosstalk between Mediator and the splicing machinery, suggesting a novel mechanism for coupling mRNA processing to transcription.
Mediator complex regulates alternative mRNA processing via the MED23 subunit.
Cell line, Treatment
View SamplesIn the present study, we demonstrate that hMSCs migrate toward human keratinocytes as well as toward conditioned medium from cultured human keratinocytes (KCM) indicating that the hMSCs can respond to signals from keratinocytes. Incubation of hMSCs with KCM induced dermal myofibroblast like differentiation characterized by expression of cytoskeletal markers vinculin and F-actin filaments with increased expression of alpha smooth muscle actin. We then examined the therapeutic efficacy of hMSCs in wound healing in two animal models representing normal and chronic wound healing. Accelerated wound healing, as determined by quantitative measurements of wound area, was observed when hMSCs and KCM exposed hMSCs (KCMSCs) were injected near the site of incisional/excisional wounds in nondiabetic athymic and NOD/SCID mice as compared with normal human fetal lung fibroblast WI38 cells or saline control induced wound healing.
Keratinocyte Induced Differentiation of Mesenchymal Stem Cells into Dermal Myofibroblasts: A Role in Effective Wound Healing.
No sample metadata fields
View SamplesLIN28 is an RNA-binding protein expressed in many developing tissues. It can block let-7 microRNA processing and help promote pluripotency. We observe LIN28 expression in the developing neural tube, colocalizing with SOX2, suggesting a role in neural development. To better understand its normal developmental function, we investigated LIN28 activity during neurogliogenesis in vitro where the succession of neuronal to glial cell fates occurs as it does in vivo. LIN28 expression was high in undifferentiated cells, and was down-regulated rapidly upon differentiation. Constitutive LIN28 expression caused a complete block of gliogenesis and an increase in neurogenesis. LIN28 expression was compatible with neuronal differentiation and did not increase proliferation. LIN28 caused significant changes in gene expression prior to any effect on let-7, notably on Igf2. Furthermore, a mutant LIN28 that permitted let-7 accumulation was still able to completely block gliogenesis. Thus, at least two biological activities of LIN28 are genetically separable and may involve distinct mechanisms. LIN28 can differentially promote and inhibit specific fates and does not function exclusively by blocking let-7 family miRNAs. Importantly, LIN28s role in cell fate succession in vertebrate cells is analogous to its activity as a developmental timing regulator in C. elegans.
LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro.
No sample metadata fields
View SamplesAmniotic fluid stem cells (AFSCs) are of interest in regenerative medicine as a non-controversial and potentially 'abundant' source of stem cells. Progress has been made in understanding amniotic fluid stem cell biology, and amniotic fluid-derived cells have been induced to form neurons, osteoblasts, muscle cells, and others. Our study evaluates change in the genome-wide expression profile of amniotic fluid stem cells during in-vitro culture, using Affymetrix U133 Plus 2.0 microarray chips. We found that only 3.08% of gene probes were differentially expressed from early to late passage of AFSC culture. The differentially expressed genes were related to biological processes or cellular function - including transcription factors, protein kinases, and cytokines/growth factors. Other gene-sets of interest were oncogenes and tumor suppressor genes, which were a very small number of genes. We further analyzed the gene sets of interest using NIH DAVID and GSEA bioinformatics databases for gene annotations analysis. Applying false discovery rate correction, there was no significant difference in the genome-wide expression profiling between early and late passage. AFSCs maintain their genome-wide expression profile during in-vitro culture.
No associated publication
Specimen part
View SamplesThere are limited studies attempting to correlate the expression changes in oral squamous cell carcinoma with clinically relevant variables. We determined the gene expression profile of 16 tumor and 4 normal tissues from 16 patients by means of Affymetrix Hu133A GeneChips. The hybridized RNA was isolated from cells obtained with laser capture microdissection, then was amplified and labeled using T7 polymerase-based in vitro transcription. The expression of 53 genes was found to differ significantly (33 upregulated, 20 downregulated) in normal versus tumor tissues under two independent statistical methods. The expression changes in four selected genes (LGALS1, MMP1, LAGY, and KRT4) were confirmed with reverse transcriptase polymerase chain reaction. Two-dimensional hierarchical clustering of the 53 genes resulted in the samples clustering according to the extent of tumor infiltration: normal epithelial tissue, tumors less than or equal to 4 cm in dimension, and tumors more than 4 cm in dimension (P=0.0014). The same pattern of clustering was also observed for the 20 downregulated genes. We did not observe any associations with lymph node metastasis (P=0.097).
No associated publication
Sex, Age
View Samples