Recent advances in direct reprogramming using cell type-specific transcription factors provide an unprecedented opportunity for rapid generation of desired human cell types from easily accessible tissues. However, due to the diversity of conversion factors that facilitate the process, an arduous screening step is inevitable to find the appropriate combination(s). Here, we show that under chemically defined conditions minimal pluripotency factors are sufficient to directly reprogram human fibroblasts into stably self-renewing neural progenitor/stem cells (NSCs), but without passing through a pluripotent intermediate stage. These NSCs can be expanded and propagated in vitro without losing their potential to differentiate into various neuronal subtypes and glia. Our direct reprogramming strategy represents a simple and advanced paradigm of direct conversion that will provide an unlimited source of human neural cells for cell therapy, disease modeling, and drug screening.
Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells.
No sample metadata fields
View SamplesThe reprogramming of fibroblast cells to induced pluripotent stem (iPS) cells raises the possibility that a somatic cell could be reprogrammed to an alternative differentiated fate without first becoming a stem/progenitor cell. A large pool of fibroblast cells exists in the post-natal heart, yet no single master regulator of direct cardiac reprogramming has been identified. Here, we report that a combination of three developmental transcription factors (i.e., Gata4, Mef2c and Tbx5) rapidly and efficiently reprogrammed post-natal cardiac or tail-tip fibroblasts directly into differentiated cardiomyocyte-like cells. Induced cardiomyocytes expressed cardiac-specific markers, had a global gene expression profile similar to cardiomyocytes, and contracted spontaneously. Fibroblast cells transplanted into mouse hearts one day after transduction of the three factors also differentiated into cardiomyocyte-like cells. These findings demonstrate that functional cardiomyocytes can be directly reprogrammed from differentiated somatic cells by defined factors. Reprogramming of endogenous or explanted fibroblast cells might provide a source of cardiomyocytes for regenerative approaches.
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.
Specimen part
View SamplesGrowth and expansion of ventricular chambers is essential during cardiogenesis and is achieved by proliferation of cardiac progenitors that are not fully differentiated. Disruption of this process can lead to prenatal lethality. In contrast, adult cardiomyocytes achieve growth through hypertrophy rather than hyperplasia. Although epicardial-derived signals may contribute to the proliferative process in myocytes, the factors and cell types responsible for development of the ventricular myocardial thickness are unclear. Moreover, the function of embryonic cardiac fibroblasts, derived from epicardium, and their secreted factors are largely unknown. Using a novel co-culture system, we found that embryonic cardiac fibroblasts induced proliferation of cardiomyocytes, in contrast to adult cardiac fibroblasts that promoted myocyte hypertrophy. We identified fibronectin, collagen and heparin-binding EGF-like growth factor as embryonic cardiac fibroblast-specific signals that collaboratively promoted cardiomyocyte proliferation in a paracrine fashion. b1 integrin was required for this proliferative response, and ventricular cardiomyocyte-specific deletion of b1 integrin in mice resulted in reduced myocardial proliferation and impaired ventricular compaction. These findings reveal a previously unrecognized paracrine function of embryonic cardiac fibroblasts in regulating cardiomyocyte proliferation.
Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling.
No sample metadata fields
View SamplesGeneration of human fibroblast-derived hepatocytes capable of extensive proliferation, as evidenced by significant liver repopulation of mice. Unlike current protocols for deriving hepatocytes from human fibroblasts, ours did not generate iPSCs, but shortcut reprogramming to pluripotency to generate an induced multipotent progenitor cell (iMPC) stage from which endoderm progenitor cells (iMPC-EPCs) and subsequently hepatocytes (iMPC-Heps) could be efficiently differentiated. After transplantation into an immune-deficient mouse model of human liver failure, iMPC-Heps were able to engraft and proliferate, and acquired levels of hepatocyte function similar to adult hepatocytes.
Mouse liver repopulation with hepatocytes generated from human fibroblasts.
Specimen part
View SamplesGrowth and expansion of ventricular chambers is essential during cardiogenesis and is achieved by proliferation of cardiac progenitors that are not fully differentiated. Disruption of this process can lead to prenatal lethality. In contrast, adult cardiomyocytes achieve growth through hypertrophy rather than hyperplasia. Although epicardial-derived signals may contribute to the proliferative process in myocytes, the factors and cell types responsible for development of the ventricular myocardial thickness are unclear. Moreover, the function of embryonic cardiac fibroblasts, derived from epicardium, and their secreted factors are largely unknown. Using a novel co-culture system, we found that embryonic cardiac fibroblasts induced proliferation of cardiomyocytes, in contrast to adult cardiac fibroblasts that promoted myocyte hypertrophy. We identified fibronectin, collagen and heparin-binding EGF-like growth factor as embryonic cardiac fibroblast-specific signals that collaboratively promoted cardiomyocyte proliferation in a paracrine fashion. b1 integrin was required for this proliferative response, and ventricular cardiomyocyte-specific deletion of b1 integrin in mice resulted in reduced myocardial proliferation and impaired ventricular compaction. These findings reveal a previously unrecognized paracrine function of embryonic cardiac fibroblasts in regulating cardiomyocyte proliferation.
Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling.
No sample metadata fields
View SamplesTargeted deletion of skNAC in mice resulted in early embryonic lethality with cardiac defects. In order to investigate the molecular mechanism of the cardiac defect, we designed the microarray comparing gene expression of the mutant E11.5 heart to wild type E11.5 heart.
skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration.
Specimen part
View SamplesGrowth and expansion of ventricular chambers is essential during cardiogenesis and is achieved by proliferation of cardiac progenitors that are not fully differentiated. Disruption of this process can lead to prenatal lethality. In contrast, adult cardiomyocytes achieve growth through hypertrophy rather than hyperplasia. Although epicardial-derived signals may contribute to the proliferative process in myocytes, the factors and cell types responsible for development of the ventricular myocardial thickness are unclear. Moreover, the function of embryonic cardiac fibroblasts, derived from epicardium, and their secreted factors are largely unknown. Using a novel co-culture system, we found that embryonic cardiac fibroblasts induced proliferation of cardiomyocytes, in contrast to adult cardiac fibroblasts that promoted myocyte hypertrophy. We identified fibronectin, collagen and heparin-binding EGF-like growth factor as embryonic cardiac fibroblast-specific signals that collaboratively promoted cardiomyocyte proliferation in a paracrine fashion. b1 integrin was required for this proliferative response, and ventricular cardiomyocyte-specific deletion of b1 integrin in mice resulted in reduced myocardial proliferation and impaired ventricular compaction. These findings reveal a previously unrecognized paracrine function of embryonic cardiac fibroblasts in regulating cardiomyocyte proliferation.
Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling.
No sample metadata fields
View SamplesThe heart responds to pathological overload through myocyte hypertrophy. In our study, we found that this response is regulated by cardiac fibroblasts via a novel paracrine mechanism involving plasma membrane calcium ATPase 4 (PMCA4). PMCA4 deletion in mice, both systemically and specifically in fibroblasts, reduces the hypertrophic response to pressure overload; however, knocking out PMCA4 specifically in cardiomyocytes does not produce this effect. Mechanistically, our microarray data on fibroblasts isolated from PMCA4 WT and PMCA4 knockout animals showed that cardiac fibroblasts lacking PMCA4 produce higher levels of secreted frizzled related protein 2 (sFRP2), which inhibits the hypertrophic response in neighbouring cardiomyocytes.
The plasma membrane calcium ATPase 4 signalling in cardiac fibroblasts mediates cardiomyocyte hypertrophy.
Sex, Age, Specimen part
View SamplesAnalysis of the roles of Irx3 and Irx5 transcription factors in mouse heart development and postnatal heart function. Results show that show that Irx3 and Irx5 have redundant function in the in the endocardium to regulate atrioventricular canal morphogenesis and outflow tract formation. A postnatal deletion of Irx3 and Irx5 surprisingly results in a restoration of the repolarization gradient that is altered in Irx5 mutant hearts, suggesting a model whereby postnatal Irx3 activity is normally repressed by Irx5.
Cooperative and antagonistic roles for Irx3 and Irx5 in cardiac morphogenesis and postnatal physiology.
Specimen part
View Samplesmicroarray was done on Heart tissue from ko and wt
Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2.
No sample metadata fields
View Samples