This SuperSeries is composed of the SubSeries listed below.
Negative energy balance and hepatic gene expression patterns in high-yielding dairy cows during the early postpartum period: a global approach.
No sample metadata fields
View SamplesIn both beef and dairy cattle, the majority of embryo loss occurs in the first 14-16 days following insemination. During this period, the embryo is completely dependent on its maternal uterine environment for development, growth and ultimately survival, therefore an optimum uterine environment is critical to embryo survival.
Endometrial gene expression in high- and low-fertility heifers in the late luteal phase of the estrous cycle and a comparison with midluteal gene expression.
Specimen part
View SamplesThe potential for dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) to improve reproductive efficiency in cattle has received much interest. The mechanisms by which n-3 PUFA may affect physiological and biochemical processes in key reproductive tissues are likely to be mediated by significant alterations in gene expression.
Dietary n-3 polyunsaturated fatty acid supplementation alters the expression of genes involved in the control of fertility in the bovine uterine endometrium.
Age, Specimen part, Treatment
View SamplesIn both beef and dairy cattle, the majority of embryo loss occurs in the first 14 days following insemination. During this period, the embryo is completely dependent on its maternal uterine environment for development, growth and ultimately survival, therefore an optimum uterine environment is critical to embryo survival.
No associated publication
Specimen part
View SamplesThe ratio of energy to protein in the finishing diet of growing pigs can impact on IMF content with consequences for pork quality. The objective of this study was to compare gene expression profiles of Musculus semimembranosus (SM) of animals divergent for IMF as a consequence of protein dietary restriction in an isocaloric diet. The animal model was derived through the imposition of low or high protein diets during the finisher stage in Duroc gilts.
No associated publication
Specimen part
View SamplesIn high yielding dairy cows the liver undergoes extensive physiological and biochemical changes during the early postpartum period in an effort to re-establish metabolic homeostasis and to counteract the adverse effects of negative energy balance (NEB). These adaptations are likely to be mediated by significant alterations in hepatic gene expression. To gain new insights into these events an EB model was created using differential feeding and milking regimes to produce two groups of cows with either a mild (MNEB) (n=5) or severe NEB (SNEB) (n=6) status. Cows were slaughtered and liver tissues collected on days 6-7 of the first follicular wave postpartum. Using an Affymetrix 23k oligonucleotide bovine array to determine global gene expression in hepatic tissue of these cows, a total of 416 genes (189 up- and 227 down-regulated) were found to be altered by SNEB. Network analysis using Ingenuity Pathway Analysis revealed that SNEB was associated with widespread changes in gene expression classified into 36 gene networks including those associated with lipid metabolism, connective tissue development and function, cell signalling, cell cycle and metabolic diseases. Severe NEB cows displayed reduced expression of transcription activators and signal transducers that regulate the expression of genes and gene networks associated with cell signalling and tissue repair. These alterations are linked with increased expression of abnormal cell cycle and cellular proliferation associated pathways. This study provides new information and insights on the effect of SNEB on gene expression in high yielding Holstein Friesian dairy cows in the early postpartum period.
Negative energy balance and hepatic gene expression patterns in high-yielding dairy cows during the early postpartum period: a global approach.
No sample metadata fields
View SamplesIncreased energy demands to support lactation, coupled with lowered feed intake capacity results in negative energy balance (NEB) and is typically characterized by extensive mobilization of body energy reserves in the early postpartum dairy cow. The catabolism of stored lipid leads to an increase in the systemic concentrations of nonesterified fatty acids (NEFA) and -hydroxy butyrate (BHB). Oxidation of NEFA in the liver result in the increased production of reactive oxygen species and the onset of oxidative stress and can lead to disruption of normal metabolism and physiology. The immune system is depressed in the peripartum period and early lactation and dairy cows are therefore more vulnerable to bacterial infections causing mastitis and or endometritis at this time. A bovine Affymetrix oligonucleotide array was used to determine global gene expression in the spleen of dairy cows in the early postpartum period. Spleen tissue was removed post mortem from five severe NEB (SNEB) and five medium NEB (MNEB) cows 15 days postpartum.SNEB increased systemic concentrations of NEFA and BHB, and white blood cell and lymphocyte numbers were decreased in SNEB animals. A total of 545 genes were altered by SNEB. Network analysis using Ingenuity Pathway Analysis revealed that SNEB was associated with NRF2-mediated oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, natural killer cell signaling, p53 signaling, downregulation of IL-15, BCL-2, and IFN- ; upregulation of BAX and CHOP and increased apoptosis with a potential negative impact on innate and adaptive immunity.
Pleiotropic effects of negative energy balance in the postpartum dairy cow on splenic gene expression: repercussions for innate and adaptive immunity.
No sample metadata fields
View Samples