The angle of rice leaf inclination is an important agronomic trait and closely related to the yield and architecture of crops. Through genetic screening, a rice gain-of-function mutant leaf inclination1, lc1, was identified . Phenotypic analysis confirmed the exaggerated leaf angels of lc1 due to the stimulated cell elongation at the collar.In this series, we compare the transcriptome of zhonghua11 and lc1 collar.
No associated publication
Specimen part
View SamplesLight and brassinosteroids (BRs) have been proved to be crucial in regulating plant growth and development, however, the mechanism of how they synergistically function is still largely unknown. To explore the underlying mechanisms in photomorphogenesis, genome-wide analyses were carried out through examining the gene expressions of the dark-grown WT or BR biosynthesis-defective mutant det2 seedlings in presence of light stimuli, or exogenous Brassinolide (BL). Results showed that BR deficiency stimulates, while BL treatment suppresses, the expressions of light responsive genes and photomorphogenesis, revealing the negative effects of BR in photomorphogenesis. This is consistent with that genes involved in cell wall modification and cellular metabolism were specifically modulated by BL during dark-light transition, and altered expressions of genes related to energy utilization. Further analysis revealed that hormone biosynthesis and signaling related genes, especially those of auxin, were altered under BL treatment or light stimuli, indicating that BR may modulate photomorphogenesis through synergetic regulation with other hormones. Additionally, suppressed ubiquitin-cycle pathway during light-dark transition hinted the presence of a complicated network among light, hormone and protein degradation. The study provides the direct evidence of BR effects in photomorphogenesis and identified the genes involved in BR and light signaling pathway, which will help to elucidate the molecular mechanism of plant photomorphogenesis.
Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis.
Age, Treatment
View SamplesHybrid weakness is a type of reproductive barrier found in many plant species and is important to plant evolution. Compared with heterosis, hybrid weakness has received less attention in evolutionary genetics studies. In rice, the hybrid weakness of the F1 progenies between the Jamaica- and temperate Japonica-types has been intensively genetically surveyed, and it has been found to be controlled by two complementary genes, Hwc1 and Hwc2. The defective development of the hybrid F1 seedlings was found to be mainly due to abnormal root growth, resulting in non-continuous growth and the eventual lethality of the plants. Detailed genome-wide analyses using the hybrid F1 plant and parents showed that, in contrast to heterosis, in which photosynthesis- and starch metabolism-related genes are preferentially expressed, the abscisic acid (ABA)-response and abiotic-/biotic- and defense-related genes were significantly up-regulated in the roots of the hybrid F1, resulting in suppressed growth of the whole plant. This indicates that the mechanisms of heterosis and hybrid weakness differ and provides informative clues to facilitate the understanding of the mechanisms controlling the reproductive isolation and hybrid weakness.
No associated publication
Age, Specimen part
View SamplesMTDH was identified to be a functional gene in cancer progression. We overexpressed the gene in MCF7 cells and explored its functions in cancer stem cell maintainance.
No associated publication
Sex, Specimen part, Disease, Cell line
View SamplesThree independent sets of purified RNA from body cells and great vessel cells of zebrafish embryos were prepared and labelled. Samples were then hybridized onto a Zebrafish AffymetrixGeneChip.
No associated publication
Age, Specimen part
View SamplesThe ER-resident protein kinase/endoribonuclease IRE1 is activated through trans-autophosphorylation in response to protein folding overload in the ER lumen and maintains ER homeostasis by triggering a key branch of the unfolded protein response. Here we show that mammalian IRE1a in liver cells is also phosphorylated by a kinase other than itself in response to metabolic stimuli. Glucagon stimulated protein kinase PKA, which in turn phosphorylated IRE1a at Ser724, a highly conserved site within the kinase activation domain. Blocking Ser724 phosphorylation impaired the ability of IRE1a to augment the upregulation by glucagon signaling of the expression of gluconeogenic genes. Moreover, hepatic IRE1a was highly phosphorylated at Ser724 by PKA in mice with obesity, and silencing hepatic IRE1a markedly reduced hyperglycemia and glucose intolerance. Hence, these results suggest that IRE1a integrates signals from both the ER lumen and the cytoplasm in the liver and is coupled to the glucagon signaling in the regulation of glucose metabolism.
PKA phosphorylation couples hepatic inositol-requiring enzyme 1alpha to glucagon signaling in glucose metabolism.
Treatment
View SamplesMolecular genetic analyses support important roles for the AtGATA2 gene in brassinolide (BR) and light regulation of plant development. The overexpression line 6-9 of AtGATA2 suppresses the etiolated phenotype of Col-0 grown in the dark.
Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis.
Specimen part
View SamplesInvestigation of differentially expressed genes in circZbtb20 or Nr4a1 deficient ILC3s
No associated publication
No sample metadata fields
View SamplesInvestigation of differentially expressed genes in Ccp6-depleted D3 ESCs
No associated publication
No sample metadata fields
View SamplesInvestigation of differentially expressed genes in Ccp2-deficient CHILPs
IL-7Rα glutamylation and activation of transcription factor Sall3 promote group 3 ILC development.
No sample metadata fields
View Samples