This SuperSeries is composed of the SubSeries listed below.
Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
EZH2 inhibition in multiple myeloma downregulates myeloma associated oncogenes and upregulates microRNAs with potential tumor suppressor functions.
Cell line
View SamplesOur previous studies have shown that inhibition of the IGF-1R pathway by the IGF-1RTK inhibitor picropodophyllin (PPP) can be achieved and also constitutes a favorable therapeutic window in multiple myeloma (MM). As no complete remission using in vivo models of MM could be obtained, a combinatorial drug screen (HTS) was performed to select the most performant combination with PPP. The HDAC inhibitor LBH589 was shown to act in synergy with PPP on survival of MM cells. The contribution from both drugs and the combination were further monitored for apoptosis, cell cycle distribution, and the impact on downstream gene and protein expression in human and mouse MM models in vitro. In the RPMI 8226 human MM cell line, simultaneous treatment with both compounds for 48h caused a 5-fold increase of apoptotic and late apoptotic/necrotic cells as compared to controls, while treatment with either compound alone only induced a 3-fold increase. After 24h cleavage of apoptotic proteins caspase -9, -8 and -3 could be found in RPMI 8226 cells treated with both drugs individually, but in the combination we observed an additive effect on the cleavage of the active forms of caspase 8 as compared to single drug treatments. The combination of LBH589 and PPP could be monitored as an accumulation of cells in the G2/M phase, and subsequent down-regulation of cell cycle regulated proteins. The effect of both compounds on the expression of cyclin B1, -E and -D2 was additive, as demonstrated by western blot. These data were also confirmed in the mouse 5T33MM cells in vitro. Gene expression analysis and validations of the RPMI 8226 cells reveal that the drug combination has better effects than the single drug alone. Combined treatment in vivo resulted in a significant prolonged survival of 5T33MM inoculated mice when compared to the control group and to treatment with the drugs alone. In conclusion, the results indicate an improved MM treatment opportunity in using a combination of PPP and LBH589.
No associated publication
Sex, Specimen part, Cell line
View Samplesin this study we define an epigenomic profile of PRC2 (H3K27me3 and bivalent) tragets in four newly diagnosed MM patients. Using Oncomine database we demonstarte that PRC2 targets are underexpressed with advanced ISS stages and correlated to poor outcome. Pharmacological inhibition of UNC1999 showed anti-myeloma potential in vitro by activating the expression genes related to apoptosis and cell differenatiation.
Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target.
Cell line
View SamplesMultiple Myeloma (MM) is a plasma cell tumor localized to the bone marrow (BM). Despite current progress in improving patient outcome, MM remains largely incurable. Disease clonal and interpatient heterogeneity has hampered identification of a common underlying mechanism for disease establishment and have slowed the development of novel targeted therapies. Epigenetic aberrations are now emerging as increasingly important in tumorigenesis, thus selective targeting of crucial epigenetic enzymes may provide new therapeutic potential in cancer including MM. Recently, we and others suggested the histone methyltransferase enhancer of zeste homolog 2 (EZH2), to be a potential therapeutic target in MM. Now we show that pharmacological inhibition of EZH2 suppresses the MM cell growth through downregulation of MM-associated oncogenes; IRF-4, XBP-1, PRDM1/BLIMP-1and c-MYC. We also show that downregulation of these genes is mediated via reactivated expression of microRNAs with tumor suppressor functions; primarily miR125a-3p and miR320c. Using chromatin immunoprecipitation (ChIP) we demonstrate that miR125a-3p and miR320c are targets of EZH2 and H3K27me3 in MM cell lines and primary MM cells. Our results further highlight the importance of polycomb-mediated silencing in MM to include microRNAs with tumor suppressor activity. This novel role further strengthens the oncogenic features of EZH2 and its potential as a therapeutic target in MM.
EZH2 inhibition in multiple myeloma downregulates myeloma associated oncogenes and upregulates microRNAs with potential tumor suppressor functions.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene copy number aberrations are associated with survival in histologic subgroups of non-small cell lung cancer.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition.
Specimen part, Cell line
View SamplesBackground: Global gene expression profiling has been widely used in lung cancer research to identify clinically relevant molecular subtypes as well as to predict prognosis and therapy response. So far, the value of these multi-gene signatures in clinical practice is unclear and the biological importance of individual genes is difficult to assess as the published signatures virtually do not overlap.
Biomarker discovery in non-small cell lung cancer: integrating gene expression profiling, meta-analysis, and tissue microarray validation.
Sex, Age
View SamplesIntra-tumor heterogeneity is a hallmark of glioblastoma multiforme, and thought to negatively affect treatment efficacy. Here we establish libraries of glioma-initiating cell (GIC) clones from patient samples and find extensive molecular and phenotypic variability between clones, including a wide range of responses to radiation and drugs. This widespread variability was observed as a continuum of multitherapy resistance phenotypes linked to a proneural-to-mesenchymal shift in the transcriptome.
Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition.
Specimen part, Cell line
View Samples