Analysis of non-differentiated Caco-2 intestinal epithelial cell line treated with polydextrose fermentation metabolites fermented for 48 hours in 4-stage in vitro colon simulator, in which the conditions mimic the human proximal, ascending, transverse and distal colon in sequence , as well as with medium, 100 mM NaCl and 5 mM butyrate. Polydextrose, a soluble fiber fermented in colon, was fermented with the in vitro colon simulator in three amounts of 0%, 1% and 2%. Results provide insight into the mechanisms underlying colon cancer cells and a comparison of a complex fiber metabolome to 5 mM butyrate and 100 mM NaCl. Furthermore, the results give insight of dosage effect of increasing the concentration of fiber.
No associated publication
Cell line
View SamplesData reveal that smokers exhibit distinct gene expression profiles relative to non-smokers and moist snuff consumers. Moist snuff consumer gene expression largely resembles that of non-tobacco consumers.
No associated publication
Sex, Age, Specimen part, Disease stage
View SamplesIntroduction: Sepsis is a complex immunological response to infection characterized by early hyperinflammation followed by severe and protracted immunosuppression, suggesting that a multi-marker approach has the greatest clinical utility for early detection, within a clinical environment focused on SIRS differentiation. Pre-clinical research using an equine sepsis model identified a panel of gene expression biomarkers that define the early aberrant immune activation. Thus, the primary objective was to apply these gene expression biomarkers to distinguish patients with sepsis from those who had undergone major open surgery and had clinical outcomes consistent with systemic inflammation due to physical trauma and wound healing.
Development and validation of a novel molecular biomarker diagnostic test for the early detection of sepsis.
Specimen part
View SamplesRecent evidence supports a role for RNA as a common pathogenic agent in both the polyglutamine and untranslated dominant expanded repeat disorders. One feature of all repeat sequences currently associated with disease is their predicted ability to form a hairpin secondary structure at the RNA level. In order to investigate mechanisms by which hairpin forming repeat RNAs could induce neurodegeneration, we have looked for alterations in gene transcripts as hallmarks of the cellular response to toxic hairpin repeat RNAs. Three disease associated repeat sequences - CAG, CUG and AUUCU - were specifically expressed in the neurons of Drosophila and resultant common, early, transcriptional changes assessed by microarray analyses. Transcripts that encode several components of the Akt/Gsk3- signalling pathway were altered as a consequence of expression of these repeat RNAs, indicating that this pathway is a component of the neuronal response to these pathogenic RNAs and may represent an important common therapeutic target in this class of diseases.
Perturbation of the Akt/Gsk3-β signalling pathway is common to Drosophila expressing expanded untranslated CAG, CUG and AUUCU repeat RNAs.
Sex, Age, Specimen part
View SamplesBackground
Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis.
Sex, Age, Specimen part
View SamplesThe WWOX gene spans chromosomal fragile site FRA16D, a region of DNA instability in cancer. While WWOX has some tumor suppressor characteristics, its normal role and functional contribution to cancer are unclear. Drosophila homozygous Wwox mutants are viable with no discernable phenotype. Drosophila Wwox interactors, identified by proteomics and micro-array analyses, mainly have roles in aerobic metabolism. Functional relationships between Wwox and either isocitrate dehydrogenase (IDH) or superoxide dismutase 1 (Sod1) were confirmed by phenotype modification, including Sod1 crinkled-wing, indicative of oxidative stress response. Endogenous reactive oxygen species levels reflect Wwox levels in Drosophila. WWOX mRNA levels in Drosophila and human cells correlate with IDH and Sod1 levels. Wwox therefore contributes to pathways involving glucose metabolism and oxidative stress response.
Drosophila orthologue of WWOX, the chromosomal fragile site FRA16D tumour suppressor gene, functions in aerobic metabolism and regulates reactive oxygen species.
Specimen part
View SamplesDominantly inherited expanded repeat neurodegenerative diseases are typically caused by the expansion of existing variable copy number tandem repeat sequences in otherwise unrelated genes. Repeats located in translated regions encode polyglutamine that is thought to be the toxic agent, however in several instances the expanded repeat is in an untranslated region, necessitating multiple pathogenic pathways or an alternative common toxic agent. As numerous clinical features are shared by several of these diseases, and expanded repeat RNA is a common intermediary, RNA has been proposed as a common pathogenic agent. Various forms of repeat RNA are toxic in animal models, by multiple distinct pathways. In Drosophila, repeat-containing double-stranded RNA (rCAG.rCUG~100) toxicity is dependent on Dicer processing evident with the presence of single-stranded rCAG7, which have been detected in affected HD brains. Microarray analysis of Drosophila rCAG.rCUG~100 repeat RNA toxicity revealed perturbation of several pathways including innate immunity. Recent reports of elevated circulating cytokines prior to clinical onset, and age-dependent increased inflammatory signaling and microglia activation in the brain, suggest that immune activation precedes neuronal toxicity. Since the Toll pathway is activated by certain forms of RNA, we assessed the role of this pathway in RNA toxicity. We find that rCAG.rCUG~100 activates Toll signaling and that RNA toxicity is dependent on this pathway. The sensitivity of RNA toxicity to autophagy further implicates innate immune activation. Expression of rCAG.rCUG~100 was therefore directed in glial cells and found to be sufficient to cause neuronal dysfunction. Non-autonomous toxicity due to expanded repeat-containing double-stranded RNA mediated activation of innate immunity is therefore proposed as a candidate pathway for this group of human genetic diseases.
Distinct roles for Toll and autophagy pathways in double-stranded RNA toxicity in a Drosophila model of expanded repeat neurodegenerative diseases.
Sex, Specimen part, Disease
View SamplesEstrogen receptor (ER) expression and proliferative activity are established prognostic factors in breast cancer. In a search for additional prognostic motives we analyzed the gene expression patterns of 200 tumors of patients who were not treated by systemic therapy after surgery using a discovery approach. After performing hierarchical cluster analysis, we identified co-regulated genes related to the biological process of proliferation, steroid hormone receptor expression, as well as B cell and T cell infiltration. We calculated metagenes as surrogate for all genes contained within a particular cluster and visualized the relative expression in relation to time to metastasis with principal component analysis. Distinct patterns led to the hypothesis of a prognostic role of the immune system in tumors with high expression of proliferation associated genes. In multivariate Cox regression analysis the proliferation metagene showed a significant association with metastasis-free survival of the whole discovery cohort (Hazard Ratio (HR) 2.20, 95% confidence interval (CI) 1.40-3.46). The B cell metagene showed additional independent prognostic information in carcinomas with high proliferative activity (HR 0.66, 95% CI 0.46 - 0.97). A prognostic influence of the B-cell metagene was independently confirmed by multivariate analysis in a first validation cohort enriched for high grade tumors (n=286, HR 0.78, 95% CI 0.62-0.98), and a second validation cohort enriched for younger patients (n=302, HR 0.83, 95% CI 0.7-0.97). Thus, we could demonstrate in three cohorts of untreated node-negative breast cancer patients, that the humoral immune system plays a pivotal role for metastasis-free survival of carcinomas of the breast.
The humoral immune system has a key prognostic impact in node-negative breast cancer.
Disease stage
View SamplesMice deficient in the glucocorticoid-regenerating enzyme 11-HSD1 resist age-related spatial memory impairment. To investigate the mechanisms/pathways involved, we used microarrays to identify differentially expressed hippocampal genes that associate with cognitive ageing and 11-HSD1. Aged wild-type mice were separated into memory-impaired and unimpaired relative to young controls according to their performance in the Y-maze. All individual aged 11-HSD1-deficient mice showed intact spatial memory. The majority of differentially expressed hippocampal genes were increased with ageing (e.g. immune/inflammatory response genes) with no genotype differences. However, the neuronal-specific transcription factor, Npas4 and immediate early gene, Arc were reduced (relative to young) in the hippocampus of memory-impaired but not unimpaired aged wild-type or aged 11-HSD1-deficient mice. Quantitative RT-PCR and in situ hybridization confirmed reduced Npas4 and Arc mRNA expression in memory-impaired aged wild-type mice. These findings suggest that 11-HSD1 may contribute to the decline in Npas4 and Arc mRNA levels associated with memory impairment during ageing, and that decreased activity of synaptic plasticity pathways involving Npas4 and Arc may, in part, underlie the memory deficits seen in cognitively-impaired aged wild-type mice.
Decreased Npas4 and Arc mRNA Levels in the Hippocampus of Aged Memory-Impaired Wild-Type But Not Memory Preserved 11β-HSD1 Deficient Mice.
Age
View SamplesAnalysis of differentiated Caco-2 intestinal epithelial cell line cocultured with probiotics L. acidophilus NCFM, B. lactis 420, L. salivarius Ls-33 bacterial cells or treated with cell-free supernatant, and with E. coli O157:H7 cell-free supernatant. Lactobacillus and Bifidobacterium are important genera suggested to be beneficial for human health and E. coli O157:H7 is a pathogen causing hemorrhagic colitis and hemolytic uremic syndrome. Results provide insight into the mechanisms underlying the beneficial effects of probiotics on intestinal epithelial cells and a comparison to pathogenic E. coli.
Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli.
No sample metadata fields
View Samples