Telogen (resting phase) hair follicles are more radioresistant than anagen (growth phase) ones. Irradiation of BALB/c mice in the anagen phase with -rays at 6 Gy induced hair follicle dystrophy, whereas irradiation in the telogen phase induced the arrest of hair follicle elongation without any dystrophy after post-irradiation depilation. In contrast, FGF18 was highly expressed in the telogen hair follicles to maintain the telogen phase and also the quiescence of hair follicle stem cells. Therefore, the inhibition of FGF receptor signaling at telogen induced the dystrophy after post-irradiation depilation. In addition, the administration of recombinant FGF18 suppressed cell proliferation in the hair follicles and enhanced the repair of radiation-induced DNA damage, so FGF18 protected the anagen hair follicles against radiation damage to enhance hair regeneration. Moreover, FGF18 reduced the expression of cyclin B1 and cdc2 in the skin and FGF18 signaling induced G2/M arrest in the keratinocyte cell line HaCaT, although no obvious change of the expression of DNA repair genes was detected by DNA microarray analysis. These findings suggest that FGF18 signaling for the hair cycle resting phase causes radioresistance in telogen hair follicles by arresting the proliferation of hair follicle cells.
FGF18 signaling in the hair cycle resting phase determines radioresistance of hair follicles by arresting hair cycling.
Sex, Specimen part
View SamplesDrugMatrix is a comprehensive rat toxicogenomics database and analysis tool developed to facilitate the integration of toxicogenomics into hazard assessment. Using the whole genome and a diverse set of compounds allows a comprehensive view of most pharmacological and toxicological questions and is applicable to other situations such as disease and development.
Genomic models of short-term exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action.
Sex, Specimen part, Compound, Time
View SamplesDrugMatrix is a comprehensive rat toxicogenomics database and analysis tool developed to facilitate the integration of toxicogenomics into hazard assessment. Using the whole genome and a diverse set of compounds allows a comprehensive view of most pharmacological and toxicological questions and is applicable to other situations such as disease and development.
Genomic models of short-term exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action.
Specimen part, Compound, Time
View SamplesDrugMatrix is a comprehensive rat toxicogenomics database and analysis tool developed to facilitate the integration of toxicogenomics into hazard assessment. Using the whole genome and a diverse set of compounds allows a comprehensive view of most pharmacological and toxicological questions and is applicable to other situations such as disease and development.
Genomic models of short-term exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action.
Sex, Specimen part, Compound, Time
View SamplesDrugMatrix is a comprehensive rat toxicogenomics database and analysis tool developed to facilitate the integration of toxicogenomics into hazard assessment. Using the whole genome and a diverse set of compounds allows a comprehensive view of most pharmacological and toxicological questions and is applicable to other situations such as disease and development.
Genomic models of short-term exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action.
Sex, Specimen part, Compound, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic models of short-term exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action.
Sex, Specimen part, Compound, Time
View SamplesDrugMatrix is a comprehensive rat toxicogenomics database and analysis tool developed to facilitate the integration of toxicogenomics into hazard assessment. Using the whole genome and a diverse set of compounds allows a comprehensive view of most pharmacological and toxicological questions and is applicable to other situations such as disease and development.
Genomic models of short-term exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action.
Sex, Specimen part, Compound, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Sex, Specimen part, Compound, Time
View SamplesAs part of the West Virginia Chemical Spill research program, NTP evaluated three chemicals that were spilled into the Elk Rever in West Virginia for their ability to cause toxicity or biological changes in a short-term toxicogenomic study
No associated publication
Sex, Specimen part
View SamplesThe goal of this study was to characterize the potential toxicity and genomic benchmark dose of 4-methylcyclohexylmethanol in liver and kidney of male Harlan Sprague Dawley rats using a 5 day dose-response toxicogenomics study design. The 5 day study is used to quickly identify the dose levels where changes in molecular pathways occur. These dose level where pathway level effects begin to occur have been shown to provide a close approximation of a no effect dose level from more resource intensive guideline toxicological assessments.
No associated publication
Sex, Specimen part, Compound, Time
View Samples