Increased genomic integrity an improved protein-based iPS cell method compared to current viral induced strategies
No associated publication
Specimen part
View SamplesTo date, all methods to generate induced pluripotent stem (iPS) cells require the use of genetic materials and/or potentially mutagenic chemicals. Here we report the generation of stable human iPS cells from human fibroblasts by directly delivering defined reprogramming proteins. This system eliminates the potential risks associated with genetic and/or chemical manipulation, and could provide a safe and physiologically intact source of cells for regenerative medicine.
Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Activity-dependent regulation of inhibitory synapse development by Npas4.
No sample metadata fields
View Sampleswe performed a DNA microarray experiment to identify activity-regulated genes that are misregulated in the absence of Npas4.
Activity-dependent regulation of inhibitory synapse development by Npas4.
No sample metadata fields
View Sampleswe used DNA microarray analysis to identify genes that are induced by neuronal activity in excitatory neurons at the time when inhibitory synapses are forming and maturing on them.
Activity-dependent regulation of inhibitory synapse development by Npas4.
No sample metadata fields
View SamplesHuman clinical trials in type 1 diabetes (T1D) patients are underway using mesenchymal stem cells (MSC) without prior validation in a mouse model for the disease. In response to this void, we characterized bone marrow-derived murine MSC for their ability to modulate immune responses in the context of T1D, as represented in non-obese diabetic (NOD) mice. In comparison to NOD-, BALB/c-MSC express higher levels of the negative costimulatory molecule PD-L1 and promote a shift toward Th2-like responses in treated NOD mice. In addition, transfer of MSC from resistant strains (i.e. NOR or BALB/c), but not from NOD mice, conferred disease protection when administered to prediabetic NOD mice. The number of BALB/c-MSC trafficking to the pancreatic lymph nodes of NOD mice was higher than in NOD mice provided autologous NOD-MSC. Administration of BALB/c-MSC resulted in reversal of hyperglycemia in 90% of NOD mice (p=0.002). Transfer of autologous NOD-MSC imparted no such therapeutic benefit, and in fact soft tissue and visceral tumors were uniquely observed in this setting (i.e. no tumors were present with BALB/c- or NOR-MSC transfer). These data provide important preclinical data supporting the basis for further development of allogeneic MSC-based therapies for T1D and potentially, other autoimmune disorders.
Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Intersection of population variation and autoimmunity genetics in human T cell activation.
Sex, Age, Race, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes.
Sex, Age, Specimen part
View SamplesGene-expression microarray datasets generated as part of the Immunological Genome Project (ImmGen). Primary cells from multiple immune lineages are isolated ex-vivo, primarily from young adult B6 male mice, and double-sorted to >99% purity. RNA is extracted from cells in a centralized manner, amplified and hybridized to Affymetrix 1.0 ST MuGene arrays. Protocols are rigorously standardized for all sorting and RNA preparation. Data is released monthly in batches of cell populations.
Transcriptomes of the B and T lineages compared by multiplatform microarray profiling.
Sex, Age
View SamplesGene expression profiling of CD4 T-Cells (CD4+CD62L+) from human peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from healthy individuals from the Boston area.
Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes.
Sex, Age, Specimen part
View Samples