We used microarray to examine changes in gene expression in the absence of Csf1r in the brain and spleen.
Pleiotropic Impacts of Macrophage and Microglial Deficiency on Development in Rats with Targeted Mutation of the <i>Csf1r</i> Locus.
Sex
View SamplesWe sought to apply the technologies of gene expression profiling to detect genes significant in the aetiology of cervical carcinoma . We investigated 14 normal (NAD), 11 low grade squamous intrapepithelial lesions (LSIL), 21 high grade squamous intraepithelial lesions (HSIL) and 28 squamous cell carcinomas by Affymetrix GeneChip whole transcriptome profiling. Two SCC cell lines were also included in the cohort. Normal and SILS were profiled using the Affymetrix U133A platform, while SCCs and Cell lines were profiled using the Affymetrix U133A plus 2.0 array.
Gain and overexpression of the oncostatin M receptor occur frequently in cervical squamous cell carcinoma and are associated with adverse clinical outcome.
Specimen part, Cell line
View SamplesTo compare the transcriptome profiles of the two principal histological variants of malignant germ cell tumor that occur in childhood
Pediatric malignant germ cell tumors show characteristic transcriptome profiles.
No sample metadata fields
View SamplesMessenger (m)RNA export from the nucleus is essential for eukaryotic gene expression. Here, we identify a transcript-selective nuclear export mechanism affecting certain human transcripts, enriched for functions in genome duplication and repair, controlled by inositol polyphosphate multikinase (IPMK), an enzyme catalyzing inositol polyphosphate and phosphoinositide turnover. We studied transcripts encoding RAD51, a protein essential for DNA repair by homologous recombination (HR), to characterize the mechanism underlying IPMK-regulated mRNA export. IPMK depletion or catalytic inactivation selectively decreases the nuclear export of RAD51 mRNA, and RAD51 protein abundance, thereby impairing HR. Recognition of a sequence motif in the untranslated region of RAD51 transcripts by the mRNA export factor ALY requires IPMK. Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), an IPMK product, restores ALY recognition in IPMK-depleted cell extracts, suggesting a mechanism underlying transcript selection. Our findings implicate IPMK in a transcript-selective mRNA export pathway controlled by phosphoinositide turnover that preserves genome integrity in humans.
Human inositol polyphosphate multikinase regulates transcript-selective nuclear mRNA export to preserve genome integrity.
Cell line
View SamplesDuring gastrulation, epiblast cells are pluripotent and their fate is thought to be constrained principally by their position. Cell fate is progressively restricted by localised signalling cues from areas including the primitive streak (PS). However, it is unknown whether this restriction accompanies, at the single cell level, a reduction in potency. Investigation of these early transition events in vitro is possible via the use of Epiblast Stem Cells (EpiSCs), self-renewing pluripotent cell lines equivalent to the postimplantation epiblast. Strikingly, EpiSCs express various early lineage-specific markers in self-renewing conditions. However, it is unknown whether cells that express these markers are pluripotent, spontaneously differentiated, or biased towards specific lineages. Here we show that EpiSC are inherently heterogeneous and contain two major and mutually exclusive subpopulations with PS and neural characteristics respectively. Using differentiation assays and embryo grafting we demonstrate that PS-like EpiSCs are biased towards mesoderm and endoderm differentiation but they still retain their pluripotent character. The acquisition of a PS character by undifferentiated EpiSC is mediated by paracrine Wnt signalling. Elevation of Wnt activity promotes further restriction into PS-associated cell fates which occurs via the generation of distinct clonal mesendodermal and neuromesodermal precursors. Collectively, our data suggest that primed pluripotency encompasses a range of reversible lineage-biased states reflecting the birth of pioneer lineage precursors from a pool of uncommitted EpiSCs similar to the earliest cell fate restriction events taking place in the gastrula-stage epiblast.
Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors.
Sex, Specimen part
View SamplesSerpinB2 inhibits migration and modulates Gata6 programming in large peritoneal macrophages
No associated publication
Sex, Age, Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus.
Specimen part
View SamplesA major barrier to research on Parkinsons disease (PD) is inaccessibility of diseased tissue for study. One solution is to derive induced pluripotent stem cells (iPSCs) from patients with PD and differentiate them into neurons affected by disease. We created an iPSC model of PD caused by triplication of SNCA encoding -synuclein. -Synuclein dysfunction is common to all forms of PD, and SNCA triplication leads to fully penetrant familial PD with accelerated pathogenesis. After differentiation of iPSCs into neurons enriched for midbrain dopaminergic subtypes, those from the patient contain double -synuclein protein compared to those from an unaffected relative, precisely recapitulating the cause of PD in these individuals. A measurable biomarker makes this model ideal for drug screening for compounds that reduce levels of -synuclein, and for mechanistic experiments to study PD pathogenesis.
Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus.
Specimen part
View SamplesXEN cells are derived from the primitive endoderm of mouse blastocysts. In culture and in chimeras they exhibit properties of parietal endoderm. However, BMP signaling promotes XEN cells to form an epithelium and differentiate into visceral endoderm (VE). Of the several different subtypes of VE described, BMP induces a subtype that is most similar to the VE adjacent to the trophoblast-derived extraembryonic ectoderm.
BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm.
Treatment
View SamplesA major barrier to research on Parkinsons disease (PD) is inaccessibility of diseased tissue for study. One solution is to derive induced pluripotent stem cells (iPSCs) from patients with PD and differentiate them into neurons affected by disease. We created an iPSC model of PD caused by triplication of SNCA encoding -synuclein. -Synuclein dysfunction is common to all forms of PD, and SNCA triplication leads to fully penetrant familial PD with accelerated pathogenesis. After differentiation of iPSCs into neurons enriched for midbrain dopaminergic subtypes, those from the patient contain double -synuclein protein compared to those from an unaffected relative, precisely recapitulating the cause of PD in these individuals. A measurable biomarker makes this model ideal for drug screening for compounds that reduce levels of -synuclein, and for mechanistic experiments to study PD pathogenesis.
Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus.
Specimen part, Cell line
View Samples