refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 16743 results
Sort by

Filters

Technology

Platform

accession-icon DRP003494
Dark-fly_female_transcriptome
  • organism-icon Drosophila melanogaster
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Flies (Drosophila melanogater) of 4 strains (M: Oregon-R, D: Dark-fly, U: Urbana-S, R: RAL-774) were reared in three light conditions (1, 4, 7: constant light; 2, 5, 8: light/dark cycling; 3, 6, 9: constant dark). Total RNAs were extracted from whole bodies of adult females. RNA expression was compared between strains and between light conditions to reveal effects of genome x environment interaction.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE32095
GPR120 mediates high-fat diet induced obesity
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Analysis of GPR120 which play roles for the fatty acid sensor in adipose tissue. Results provide insight into the transcriptional effects caused by the loss of the GPR120 proteins and provide further insight into their functions.

Publication Title

Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE62385
Intermittent Hypoxia ageing
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Expression data from mice exposed to intermittent hypoxia and mice reared for 12 months. We used microarrays to analyze the transcriptome of hippocampus from mice exposed to intermittent hypoxia or aged mice.

Publication Title

Treatment of intermittent hypoxia increases phosphorylated tau in the hippocampus via biological processes common to aging.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE46295
Effects of a Tricaprylin Emulsion on Anti-glomerular Basement Membrane Glomerulonephritis in Rats
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Expression data from rat with anti-glomerular basement membrane nephritis (anti-GBM). We used microarrays to analyze the transcriptome of kidney from anti-GBM model rat with or without drug treatment

Publication Title

Effects of a Tricaprylin Emulsion on Anti-glomerular Basement Membrane Glomerulonephritis in Rats: In Vivo and in Silico Studies.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28574
Transcriptome expressed in the mouse suprachiasmatic nucleus
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This array set was used to identify the genes that are highly expressed in the mouse suprachiasmatic nucleus (SCN). Because pharmacological inhibition of Gai/o activity with pertussis toxin hampers intercellular synchronization and causes dampened rhythms of the entire SCN, we hypothesized that member(s) of the Regulator of G protein Signaling (RGS) family might contribute to synchronized cellular oscillations in the SCN. To test this hypothesis, we surveyed all known mouse Rgs genes for their expression by using GeneChip and selected the genes that are highly expressed in the SCN for further analysis.

Publication Title

Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Treatment, Time

View Samples
accession-icon SRP103696
Leaf gene expression from diverse maize lines.
  • organism-icon Zea mays
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA-sequencing was used on leaf tissue from 29 diverse maize lines to characterize differences in gene expression between lines. The main goal from this study was to relate gene expression to measured traits of interest.

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP090625
Sequencing the transcriptome of the chorioallantoic membrane in domestic chicken eggs
  • organism-icon Gallus gallus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

This project sequences the mRNA of the chorioallantoic membrane of Gallus gallus, the domestic chicken.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE56026
Gene expression in human endometrial cancer tissues and serous papillary endometrial cancer cell line, SPAC-1L, treated by STAT1-siRNA and/or IFN-gamma
  • organism-icon Homo sapiens
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Endometrial cancer is one of the most common gynecologic malignancies, and patients with high grade disease, especially serous papillary subtype (SPEC) are often related to the poor outcomes. Recent genome-wide analyses have revealed that SPEC exhibits gene expression profiles that are distinct from the endometrioid histologic subtype; therefore, it is important to identify the SPEC driver genes or pathways responsible for the inherently aggressive phenotypes and to develop SPEC-specific therapies to target these driver genes or pathways.

Publication Title

STAT1 drives tumor progression in serous papillary endometrial cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE39204
Gene-expression profiles of ascites-cytology-positive ovarian cancer
  • organism-icon Homo sapiens
  • sample-icon 61 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Ovarian cancer often progresses by disseminating to the peritoneal cavity, but how the tumor cells evade host immunity during this process is poorly understood. Programmed cell death 1 ligand 1 (PD-L1) is known to suppress immune system and to be an unfavorable prognostic factor in ovarian cancer. The purpose of this study was to elucidate the function of PD-L1 in peritoneal dissemination. Positive cytology in ascites was a significant poor prognostic factor in ovarian cancer. Microarray profiles of cytology-positive cases showed significant correlations with Gene Ontology terms related to immune system process. Microarray and immunohistochemistry in human ovarian cancer revealed significant correlation between PD-L1 expression and positive cytology. PD-L1 expression on mouse ovarian cancer cells was induced upon encountering lymphocytes in the course of peritoneal spread in vivo and upon co-culturing with lymphocytes in vitro. Tumor cell lysis by CTLs was attenuated when PD-L1 was overexpressed and promoted when it was silenced. PD-L1 overexpression also inhibited gathering and degranulation of CTLs. In mouse ovarian cancer dissemination models, depleting PD-L1 expression on tumor cells resulted in inhibited tumor growth in the peritoneal cavity and prolonged survival. Restoring immune function by inhibiting immune-suppressive factors such as PD-L1 may be a promising therapeutic strategy for peritoneal dissemination.

Publication Title

PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE27677
A conserved JNK/AP-1 module is a key mediator of intermittent fasting-induced longevity in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Dietary restriction extends lifespan and delays the age-related physiological decline in many species. Intermittent fasting (IF) is one of the most effective dietary restriction regimens that extends lifespan in C. elegans and mammals1,2. In C. elegans, the FOXO transcription factor DAF-16 is implicated in fasting-induced gene expression changes and the longevity response to IF3; however, the mechanisms that sense and transduce fasting-stress stimuli have remained largely unknown. Here we show that a KGB-1/AP1 (activator protein 1) module is a key signalling pathway that mediates fasting-induced transcriptional changes and IF-induced longevity. Our promoter analysis coupled to genome-wide microarray results has shown that the AP-1-binding site, together with the FOXO-binding site, is highly over-represented in the promoter regions of fasting-induced genes. We find that JUN-1 (C. elegans c-Jun) and FOS-1 (C. elegans c-Fos), which constitute the AP-1 transcription factor complex, are required for IF-induced longevity. We also find that KGB-1 acts as a direct activator of JUN-1 and FOS-1, is activated in response to fasting, and, among the three C. elegans JNKs, is specifically required for IF-induced longevity. Our results demonstrate that most fasting-induced upregulated genes, including almost all of the DAF-16-dependent genes, require KGB-1 and JUN-1 function for their induction, and that the loss of kgb-1 suppresses the fasting-induced upregulation of DAF-16 target genes without affecting fasting-induced DAF-16 nuclear translocation. These findings identify the evolutionarily conserved JNK/AP-1 module as a key mediator of fasting-stress responses, and suggest a model in which two fasting-induced signalling pathways leading to DAF-16 nuclear translocation and KGB-1/AP-1 activation, respectively, integrate in the nucleus to coordinately mediate fasting-induced transcriptional changes and IF-induced longevity.

Publication Title

A fasting-responsive signaling pathway that extends life span in C. elegans.

Sample Metadata Fields

Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact