Transcriptomic analysis of ZmUbi:ZmNAC111 transgenic maize under under well-watered and 2h dehydration stress conditions
No associated publication
Specimen part
View SamplesThis study is aimed to compare the gene expression between wild type and 35S:6MYC-HARP1 in response to wounding treatment.
No associated publication
Age, Specimen part, Treatment
View SamplesNine accessions of Arabidopsis were sampled before and after 14d of cold acclimation at 4°C. Transcript data were combined with metabolite data and related to quantitative measurement of plant freezing tolerance as determined by leaf electrolyte leakage assays.
Natural genetic variation of freezing tolerance in Arabidopsis.
Specimen part
View SamplesFloral organs are extremely sensitive to stress during anthesis and lead to severe yield loss. Rice anthers and pollinated pistils of two cultivars with contrasting tolerance to heat and drought stress under variable conditions, including control, heat, combined heat and drought stress, were used to explore gene expression pattern in male and female reproductive organs during anthesis under control and stress conditions. More gene regulation was induced by combined drought and heat stress than heat in anthers of both cultivars. N22 showed less regulation under combined stress than Moroberekan. The overlap of regulated genes between two cultivars was rather low, indicated the distinct molecular stress responses.
No associated publication
Specimen part
View SamplesDuring cold acclimation plants increase their freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many cold acclimated plants become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures. There is hardly any information available about the molecular basis of this adaptation. However, Arabidopsis thaliana is among the species that acclimate to sub-zero temperatures. This makes it possible to use the molecular and genetic tools available in this species to identify components of sub-zero signal transduction and acclimation. Here, we have used microarrays and a qRT-PCR primer platform covering 1880 genes encoding transcription factors to monitor changes in gene expression in the accessions Columbia-0, Rschew and Tenela during the first three days of sub-zero acclimation at -3C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY transcription factors may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5% of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes were down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription were up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation.
Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation.
Specimen part, Time
View SamplesPlant seeds prepare for germination already during seed maturation. We performed a detailed transcriptome analysis of barley grain maturation, desiccation and germination in two tissue fractions (endosperm/aleurone = e/a and embryo = em) using the Affymetrix barley1 chip.
Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools.
No sample metadata fields
View Samples- Background and Aims: Oxygen can fall to low concentrations within plant tissues, either because of environmental factors that decrease the external oxygen concentration or because the movement of oxygen through the plant tissues cannot keep pace with the rate of oxygen consumption. Recent studies document that plants can decrease their oxygen consumption in response to relative small changes in oxygen concentrations to avoid internal anoxia. The molecular mechanisms underlying this response have not been identified yet. The aim of this study was to use transcript and metabolite profiling to investigate the genomic response of Arabidopsis roots to a mild decrease in oxygen concentrations.
Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants.
No sample metadata fields
View SamplesTo investigate the response of Arabidopsis thaliana plants to non-freezing, cool temperatures, we subjected four week old plants to various chilling temperatures at defined times during the diurnal cycle to control for diurnal effects on transcription. From the same plants, metabolites and enzyme activities were measured as well. Interestingly a gradual change could be observed over a wide range of temperatures. Some of which could be attributed to the CBF program.
Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range.
Specimen part
View SamplesUsually starch is nearly depleted at the end of the night. To induce a gradual depletion of carbon, we have analysed the global response of transcripts during an extension of the night, where carbon becomes severely limiting from about four hours onwards.
Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes.
Specimen part
View SamplesComparison of cell sap from trichomes and pavement cells. We performed a detailed transcriptome analysis of cell sap from leaf epidermal cell types using the Affymetrix Ath1 chip.
No associated publication
Age
View Samples