This SuperSeries is composed of the SubSeries listed below.
Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.
Specimen part, Disease, Disease stage, Treatment, Subject
View SamplesThe survival of isolated metastatic cells and expansion into macroscopic tumour has been recognized as a limiting step for metastasis formation in several cancer types yet the determinants of this process remain largely uncharacterized. In colorectal cancer (CRC), we identify a transcriptional programme in tumour-associated stromal cells, which is intimately linked to a high risk of developing recurrent disease after therapy. A large proportion of CRCs display mutational inactivation of the TGF-beta pathway but paradoxically they are characterized by high TGF-beta production. In these tumours, TGF-beta instructs a transcriptional programme in stromal cells, which confers a high risk of developing metastatic disease.
Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.
Specimen part, Disease, Disease stage, Subject
View SamplesThe survival of isolated metastatic cells and expansion into macroscopic tumour has been recognized as a limiting step for metastasis formation in several cancer types yet the determinants of this process remain largely uncharacterized. In colorectal cancer (CRC), we identify a transcriptional programme in tumour-associated stromal cells, which is intimately linked to a high risk of developing recurrent disease after therapy. A large proportion of CRCs display mutational inactivation of the TGF-beta pathway but paradoxically they are characterized by high TGF-beta production. In these tumours, TGF-beta instructs a transcriptional programme in stromal cells, which confers a high risk of developing metastatic disease.
Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.
Disease, Disease stage, Subject
View SamplesThe survival of isolated metastatic cells and expansion into macroscopic tumour has been recognized as a limiting step for metastasis formation in several cancer types yet the determinants of this process remain largely uncharacterized. In colorectal cancer (CRC), we identify a transcriptional programme in tumour-associated stromal cells, which is intimately linked to a high risk of developing recurrent disease after therapy. A large proportion of CRCs display mutational inactivation of the TGF-beta pathway but paradoxically they are characterized by high TGF-beta production. In these tumours, TGF-beta instructs a transcriptional programme in stromal cells, which confers a high risk of developing metastatic disease.
Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation.
Specimen part, Treatment
View SamplesCurrent expression profiling methods use RNA from hundreds of thousands or thousands cells. Many fields of biology can not use microarrays due to the nature of the biological systems used that are formed by hundreds or dozens of cells. Here we present a method that can handle RNA amount limitation and gives gene expression profiles from as little as 10 cells. We first validate the method hybridizing amplified RNA from MAQC samples A and B. To do that, 25 ng or 100 pg were used and expression profiles obtained as good as when compared to Affymetrix's chemistry for amplification and labeling. The same experiment was done but using sorted cells from two comercial cell lines (SW620 and SW480) obtaining the same differential expression profiling from 2000 cells or 10 cells. The central step of the method is Whole Transcriptome Amplification (WTA) from Sigma that allows the amplification of very small amounts of RNA as starting material.
Accurate expression profiling of very small cell populations.
Cell line
View SamplesUsing EphB2 or the ISC marker Lgr5, we have FACS-purified and profiled intestinal stem cells (ISCs), crypt proliferative progenitors and late transient amplifying cells to define a gene expression program specific for normal ISCs.
The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse.
Specimen part
View SamplesHmx1 is a transcription factor expressed in the developing eye and ear and in some other parts of the nervous system. Dumbo mice are carrying the Hmx1 p.Q64X loss-of-function mutation (Munroe et al., 2009. BMC Developmental Biology). Transcriptomic analyses of this mouse model allows to decipher biological pathways under the control of Hmx1. In our study, we used it to better understand the role of Hmx1 in the retina and to identify several of its target genes.
Identification of HMX1 target genes: a predictive promoter model approach.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Isolation and in vitro expansion of human colonic stem cells.
Sex, Specimen part, Subject
View SamplesUsing the surface marker EPHB2, we have FACS-purified and profiled stem cell-enriched cell fractions from normal human mucosa, crypt proliferative progenitors and late transient amplifying cells to define a gene expression program specific for normal human colon epithelial stem cells
Isolation and in vitro expansion of human colonic stem cells.
Specimen part, Subject
View SamplesCamptothecin (CPT) is a plant alkaloid that specifically binds topoisomerase I (Topo I) inhibiting its activity and inducing double stranded breaks in the DNA, activating the genotoxic cell responses, and ultimately, it might trigger programmed cell death (PCD). We used microarrays to detail the changes in gene expression during as a consequence of CPT treatment in maize immature embryos. In four independent experiments immature embryos were plated on MS medium supplemented with 50 uM CPT and incubated during three days. Untreated embryos incubated on MS medium were used as controls.
Transcriptomic and proteomic profiling of maize embryos exposed to camptothecin.
Specimen part, Compound
View Samples