RORt+ innate lymphoid cells (ILC) are crucial players of innate immune responses and represent a major source of IL-22, which has an important role in mucosal homeostasis. The signals required by RORt+ ILC to express IL-22 and other cytokines, including TNF, have only partially been elucidated. Here we show that RORt+ ILC can directly sense the environment by the engagement of the activating receptor NKp44. NKp44 triggering in RORt+ ILC selectively activates a coordinated pro-inflammatory program, including TNF, while cytokine stimulation induces preferentially IL-22 expression. However, combined engagement of NKp44 and cytokine receptors results in a strong synergistic effect. These data support the concept that NKp44+ RORt+ ILC can be activated without cytokines and are able to switch between IL-22 or TNF production, depending on the triggering stimulus.
RORγt⁺ innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44.
Specimen part, Treatment
View SamplesThe number of long-term survivors of high-risk neuroblastoma remains discouraging, with 10-year survival as low as 20%, despite decades of considerable international efforts to improve outcome. Major obstacles remain and include managing resistance to induction therapy, which causes tumor progression and early death in high-risk patients, and managing chemotherapy-resistant relapses, which can occur years after the initial diagnosis. Identifying and validating novel therapeutic targets is essential to improve treatment. Delineating and deciphering specific functions of single histone deacetylases in neuroblastoma may support development of targeted acetylome-modifying therapeutics for patients with molecularly defined high-risk neuroblastoma profiles. We show here that HDAC11 depletion in MYCN-driven neuroblastoma cell lines strongly induces cell death, mostly mediated by apoptotic programs. Genes necessary for mitotic cell cycle progression and cell division were most prominently enriched in at least two of three time points in whole-genome expression data combined from two cell systems, and all nine genes in these functional categories were strongly repressed, including CENPA, KIF14, KIF23 and RACGAP1. Enforced expression of one selected candidate, RACGAP1, partially rescued the induction of apoptosis caused by HDAC11 depletion. High-level expression of all nine genes in primary neuroblastomas signicantly correlated with unfavorable overall and event-free survival in patients, suggesting a role in mediating the more aggressive biological and clinical phenotype of these tumors. Our study identied a group of cell cycle-promoting genes regulated by HDAC11, being both predictors of unfavorable patient outcome and essential for tumor cell viability. The data indicates a signicant role of HDAC11 for mitotic cell cycle progression and survival of MYCN-amplified neuroblastoma cells, and suggests that HDAC11 could be a valuable drug target.
Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival.
Cell line, Time
View SamplesAging animals undergo a variety of changes in molecular processes. Among these, the cellular circadian clock has been shown to change as animals age. Moreover, there is evidence that also core circadian clock proteins could influence the ageing behavior of vertebrates.
No associated publication
Specimen part
View SamplesActivity-dependent gene expression is central for sculpting neuronal connectivity in the brain. Despite the importance for synaptic plasticity, a comprehensive analysis of the temporal changes in the transcriptomic response to neuronal activity is lacking. In a genome wide survey we identified genes that were induced at 1, 4, 8, or 24 hours following neuronal activity in the hippocampus.
Genome-wide profiling of the activity-dependent hippocampal transcriptome.
Sex, Age, Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.
Cell line, Treatment
View SamplesRAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT-PCR and Western Blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype.
Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.
Cell line, Treatment
View SamplesRetinol Saturase (RetSat) is an oxidoreductase expressed at high levels in the hepatocyte fraction of liver.
Retinol saturase coordinates liver metabolism by regulating ChREBP activity.
No sample metadata fields
View SamplesRAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT-PCR and Western Blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype.
Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.
Cell line, Treatment
View SamplesIn order to investigate the genes that might be regulated by the activating signal cointegrator 1 (ASC-1) complex we performed an expression analysis using the GeneChip Human Gene 2.0 ST Array (Affymetrix)
Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures.
Specimen part
View SamplesERG overexpression was conducted in stably transfected K562 cell line with a tet-on inducible plasmid habouring ERG3. Prolonged induction of ERG (8 days) produced spindle cell shape changes whereas non-induced cells retained the round morphology. In oder to determine the genes responsible for inducing cell shape changes, a genome wide transcriptional screen was conducted.
ERG induces a mesenchymal-like state associated with chemoresistance in leukemia cells.
Cell line, Treatment
View Samples