The forkhead transcription factor, Foxp3, is pivotal to the development and function of CD4+CD25+ T regulatory (Treg) cells that limit autoimmunity and maintain immune homeostasis. Previous data indicated that many of the functions of Foxp3 are controlled by the acetylation of several lysines within the forkhead domain. We now show that mutation of each of two lysines within the forkhead domain of Foxp3, lysine at position 382 (K17) and lysine at position 393 (K18), impaired Treg suppressive function in vivo and in vitro. Lysine mutations also decreased Treg expression of multiple functionally important Foxp3-regulated genes, and inhibited the promoter remodeling of target genes (CTLA-4 and IL-2) without affecting Foxp3 expression level. These data point to the need for a further understanding of the effects of various post-translational modifications on Foxp3 function. Our studies also provide a rationale for developing small molecule inhibitors of such post-translational modifications so as to regulate Foxp3+ Treg function clinically.
No associated publication
Specimen part
View SamplesT-regulatory (Treg) cells are important to immune homeostasis, and Treg cell deficiency or dysfunction leads to autoimmune disease. An histone/protein acetyltransferase (HAT), p300, was recently found important for Treg function and stability, but further insights into the mechanisms by which p300 or other HATs affect Treg biology are needed. Here we show that CBP, a p300 paralog, is also important in controlling Treg function and stability. Thus, while mice with Treg-specific deletion of CBP or p300 developed minimal autoimmune disease, the combined deletion of CBP and p300 led to fatal autoimmunity by 3-4 weeks of age. The effects of CBP and p300 deletion on Treg development are dose-dependent, and involve multiple mechanisms. CBP and p300 cooperate with several key Treg transcription factors that act on the Foxp3 promoter to promote Foxp3 production. CBP and p300 also act on the Foxp3 CNS2 region to maintain Treg stability in inflammatory environments by regulating pCREB function and GATA3 expression, respectively. Lastly, CBP and p300 regulate the epigenetic status and function of Foxp3. Our findings provide insights into how HATs orchestrate multiple aspects of Treg development and function, and identify overlapping but also discrete activities for p300 and CBP in control of Treg cells.
Two histone/protein acetyltransferases, CBP and p300, are indispensable for Foxp3+ T-regulatory cell development and function.
No sample metadata fields
View SamplesSirtuin-1 (Sirt1), a class III histone/protein deacetylase is central to cellular metabolism, stress responses and aging, but its contributions to various host immune functions have been little investigated. To study the role of Sirt1 in T-cell functions, we undertook targeted deletions by mating mice with a floxed Sirt1 gene to mice expressing CD4-cre or Foxp3-cre recombinase, respectively. We found that Sirt1 deletion left conventional T-effector cell activation, proliferation and cytokine production largely unaltered. However, Sirt1 targeting promoted the expression and acetylation of Foxp3, a key transcription factor in T-regulatory (Treg) cells, and increased Treg suppressive functions in vitro and in vivo. Consistent with these data, mice with targeted deletions of Sirt1 in either CD4+ T-cells or Foxp3+ Treg cells exhibited prolonged survival of MHC-mismatched cardiac allografts. Allografts in Sirt1 targeted recipients showed long-term preservation of myocardial histology and infiltration by Foxp3+ Treg cells. Comparable results were seen in wild-type allograft recipients treated with Sirt1 inhibitors, such as EX-527 and splitomicin. Hence, Sirt1 may inhibit Treg functions and its targeting may have therapeutic value in autoimmunity and transplantation.
Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival.
Specimen part
View SamplesWe investigated the role of DNMT1 in immune homeostasis by generating mice lacking DNMT1 in Foxp3+ T-regulatory (Treg) cells. These mice showed decreased peripheral Foxp3+ Tregs, complete loss of Foxp3+ Treg suppressive functions in vitro and in vivo, and died from autoimmunity by 3-4 weeks unless they received perinatal transfer of wild-type Tregs that prolonged their survival. Methylation of CpG-sites in the TSDR region of Foxp3 was unaffected by DNMT1 deletion, but microarray revealed more >500 proinflammatory and other genes were upregulated in DNMT1-/- Tregs. CD4-Cre-mediated DNMT1 deletion showed inability of conventional T cells to convert to Foxp3+ Treg under appropriate polarizing conditions. Hence, DNMT1 is absolutely necessary for maintenance of the gene program required for normal Treg development and function.
Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity.
Specimen part
View SamplesFoxp3+ T-regulatory cells (Tregs) are key to immune homeostasis such that their diminished numbers or function can cause autoimmunity and allograft rejection. Foxp3+ Tregs express histone/protein deacetylases (HDACs) that regulate chromatin remodeling, gene expression and protein function. Pan-HDAC inhibitors developed for oncology enhance Treg production and suppression but have limited non-oncologic applications given their broad effects. We show, using HDAC6-deficient mice and WT mice treated with HDAC6-specific inhibitors, that HDAC6 inhibition promotes Treg suppressive activity in models of inflammation and autoimmunity, including multiple forms of experimental colitis and fully MHC-incompatible cardiac allograft rejection. Many of the beneficial effects of HDAC6 targeting are also achieved by inhibition of the HDAC6-regulated protein, HSP90. Hence, selective targeting of a single HDAC isoform, HDAC6, or its downstream target, HSP90, can promote Treg-dependent suppression of autoimmunity and transplant rejection.
Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3(+) T-regulatory cells.
No sample metadata fields
View SamplesThe proposed use of Foxp3+ T-regulatory (Treg) cells as potential cellular therapy in patients with autoimmune diseases, or post-hemopoietic stem cell or organ transplantation, requires a sound understanding of the transcriptional regulation of Foxp3 expression. Conserved CpG dinucleotides in the Treg-specific demethylated region (TSDR) upstream of Foxp3 are demethylated only in stable, thymic-derived Foxp3+ Tregs. Since methyl-binding domain (Mbd) proteins recruit histone-modifying and chromatin-remodeling complexes to methylated sites, we tested whether targeting of Mbd2 might promote demethylation of Foxp3 and thereby promote Treg numbers or function. Surprisingly, while ChIP analysis showed Mbd2 binding to the Foxp3-associated TSDR site in Tregs, Mbd2 targeting by homologous recombination or siRNA decreased Treg numbers and impaired Treg suppressive function in vitro and in vivo. Moreover, we found complete TSDR demethylation in WT Tregs but >75% methylation in Mbd2-/- Tregs, whereas re-introduction of Mbd2 into Mbd2-null Tregs restored TSDR demethylation, Foxp3 gene expression and Treg suppressive function. Lastly, Mbd2-/- Tregs had markedly binding of the DNA demethylase enzyme, Tet2, in the TSDR region. These data show that Mbd2 has a key role in promoting TSDR demethylation, Foxp3 expression and Treg suppressive function.
Mbd2 promotes foxp3 demethylation and T-regulatory-cell function.
Specimen part
View SamplesFoxp3+ T-regulatory (Treg) cells maintain immune homeostasis and limit autoimmunity, but can also curtail host responses to cancers. Tregs are therefore promising targets to enhance anti-tumor immunity. Histone/protein acetyltransferases (HATs) promote chromatin accessibility, gene transcription and the function of multiple transcription factors and non-histone proteins. We found that conditional deletion or pharmacologic inhibition of one specific HAT, p300, in Foxp3+ Tregs, increased TCR-induced apoptosis in Tregs, impaired Treg suppressive function and iTreg peripheral conversion, and limited tumor growth in immunocompetent, but not in immunodeficient, hosts. Our data demonstrate that p300 is important for Foxp3+ Treg function and homeostasis in vivo and in vitro, and identify a novel mechanism to diminish Treg function without overtly impairing effector Tcell responses or inducing autoimmunity. Collectively, these data suggest a new approach for cancer immunotherapy.
Inhibition of p300 impairs Foxp3⁺ T regulatory cell function and promotes antitumor immunity.
Specimen part
View SamplesTargeting histone/protein deacetylase (HDAC)-6, -9, or Sirtuin-1 (Sirt1) augments the suppressive functions of Foxp3+ T regulatory (Treg) cells, but it is unclear if this involves different mechanisms, such that combined inhibition would be beneficial. We compared the suppressive functions of Tregs from wild-type C57BL/6 mice or mice with global (HDAC6-/-, HDAC9-/-, dual HDAC6/9-/-) or conditional deletion (CD4-Cre or Foxp3-Cre and floxed Sirt1; GSE26425) alone, or after treatment with isoform-selective HDAC inhibitors (HDACi). We found the heat shock response was crucial in mediating the effects of HDAC6, but not Sirt1 inhibition. Furthermore, while HDAC6, HDAC9 and Sirt1 all deacetylate Foxp3, each has diverse effects on Foxp3 transcription, and loss of HDAC9 is associated with stabilization of Stat5 acetylation and its transcriptional activity. Targeting different HDAC can increase Treg function by multiple and additive mechanisms, indicating the therapeutic potential for combinations of HDACi in the management of autoimmunity and alloresponses post-transplant.
Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms.
No sample metadata fields
View SamplesMicroarry from Treg with conditional knockout of Usp7
Ubiquitin-specific Protease-7 Inhibition Impairs Tip60-dependent Foxp3+ T-regulatory Cell Function and Promotes Antitumor Immunity.
Specimen part
View SamplesCurrent interest in Foxp3+ T-regulatory (Treg) cells as therapeutic targets in transplantation is largely focused on their harvesting pre-transplant, expansion and infusion post-transplantation. An alternate strategy of pharmacologic modulation of Treg function using histone/protein deacetylase inhibitors (HDACi) may allow more titrable and longer-term dosing. However, the effects of broadly acting HDACi vary, such that HDAC isoform-selective targeting is likely required. We report data from mice with constitutive or conditional deletion of HDAC11 within Foxp3+ Treg cells, and their use, along with small molecule HDAC11 inhibitors, in allograft models. Global HDAC11 deletion had no effect on health or development, and compared to WT controls, Foxp3+ Tregs lacking HDAC11 showed increased suppressive function, and increased expression of Foxp3 and TGF-beta. Likewise, compared to WT recipients, conditional deletion of HDAC11 within Tregs led to long-term survival of fully MHC-mismatched cardiac allografts, and prevented development of transplant arteriosclerosis in an MHC class II-mismatched allograft model. The translational significance of HDAC11 targeting was shown by the ability of an HDAC11i to promote long-term allograft allografts in fully MHC-disparate strains. These data are powerful stimuli for the further development and testing of HDAC11-selective pharmacologic inhibitors, and may ultimately provide new therapies for transplantation and autoimmune diseases.
No associated publication
No sample metadata fields
View Samples