So far, the majority of research on piRNAs was carried out in popular model organisms such as fruit fly and mouse, which however do not closely reflect human PIWI biology. Thus, we high-throughput sequenced and computationally analyzed piRNAs expressed in the adult testis of the pig owing to its full set of mammalian Piwi paralogs, availability for repeat experiments and the existence of elementary data from previous studies on the porcine PIWI/piRNA system. We provide an exhaustive characterization of porcine piRNAs and genomic piRNA clusters. In addition, we reveal that a considerable proportion of piRNAs matches protein coding genes, exhibiting characteristics that point to a biogenesis within the post-transcriptional silencing mechanism of the PIWI/piRNA pathway, commonly referred to as ping pong cycle. We further show that the majority of identified piRNA clusters spans exonic sequences of protein-coding genes or pseudogenes, which indicates the existence of different mechanisms for the generation of piRNAs directed against mRNA. Our data provides evidence that spliced mRNAs, derived from such loci, are not only targeted by piRNAs but are also subject to ping pong cycle processing. Finally, we demonstrate that homologous genes are targeted by piRNAs in pig, mouse and human. Altogether, this strongly suggests a role for mammalian piRNA clusters in gene regulation alongside of TE repression.
piRNAs from Pig Testis Provide Evidence for a Conserved Role of the Piwi Pathway in Post-Transcriptional Gene Regulation in Mammals.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates.
Sex, Age, Specimen part
View SamplesIn development, timing is of the utmost importance, and the timing of various developmental processes are often changed during evolution. During human evolution sexual maturation has been delayed relative to other primates and this may have played a critical role for both the increase of human brain size and the rise of human-specific cognitive traits .
Transcriptional neoteny in the human brain.
Sex, Age, Specimen part
View SamplesWe investigated molecular changes during human, chimpanzee, and rhesus macaque postnatal brain development at the transcriptome, proteome, and metabolome levels in two brain regions: the prefrontal cortex (PFC) that is involved in several human-specific cognitive processes, and the cerebellar cortex (CBC) that may be functionally more conserved. We find a nearly three-fold excess of human-specific gene expression changes in PFC compared to CBC. The most prominent human-specific mRNA expression pattern in the PFC is a developmental delay of approximately 5 years in the expression of genes associated with learning and memory, such as synaptic transmission and long-term potentiation. This pattern is supported by correlated changes in concentrations of proteins and the respective neurotransmitters and its magnitude is beyond the shift expected from the life-histories of the species. Mechanistically, it might be driven by change in timing of expression of four or more transcription factors. We speculate that delayed synaptic maturation in PFC may play a role in the emergence of human-specific cognitive abilities.
MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates.
Sex, Age, Specimen part
View SamplesWe investigated molecular changes during human, chimpanzee, and rhesus macaque postnatal brain development at the transcriptome, proteome, and metabolome levels in two brain regions: the prefrontal cortex (PFC) that is involved in several human-specific cognitive processes, and the cerebellar cortex (CBC) that may be functionally more conserved. We find a nearly three-fold excess of human-specific gene expression changes in PFC compared to CBC. The most prominent human-specific mRNA expression pattern in the PFC is a developmental delay of approximately 5 years in the expression of genes associated with learning and memory, such as synaptic transmission and long-term potentiation. This pattern is supported by correlated changes in concentrations of proteins and the respective neurotransmitters and its magnitude is beyond the shift expected from the life-histories of the species. Mechanistically, it might be driven by change in timing of expression of four or more transcription factors. We speculate that delayed synaptic maturation in PFC may play a role in the emergence of human-specific cognitive abilities.
MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates.
Sex, Age, Specimen part
View SamplesIn development, timing is of the utmost importance, and the timing of various developmental processes are often changed during evolution. During human evolution sexual maturation has been delayed relative to other primates and this may have played a critical role for both the increase of human brain size and the rise of human-specific cognitive traits .
Transcriptional neoteny in the human brain.
Sex, Age, Specimen part
View SamplesNeurons and endothelial cells were identified by immunohistochemistry in human brains, isolated by laser-capture-microdissection and used to find genes preferentially expressed in the two cell types.
Evolution of neuronal and endothelial transcriptomes in primates.
Sex, Specimen part
View SamplesBeyond the DNA sequence difference between humans and closely related apes, there are large differences in the environments that these species experience. One prominent example for this is diet. The human diet diverges from those of other primates in various aspects, such as having a high calorie and protein content, as well as being cooked. Here, we used a laboratory mouse model to identify gene expression differences related to dietary differences.
Human and chimpanzee gene expression differences replicated in mice fed different diets.
Sex, Age
View SamplesBeyond the DNA sequence difference between humans and closely related apes, there are large differences in the environments that these species experience. One prominent example for this is diet. The human diet diverges from those of other primates in various aspects, such as having a high calorie and protein content, as well as being cooked. Here, we used a laboratory mouse model to identify gene expression differences related to dietary differences.
Human and chimpanzee gene expression differences replicated in mice fed different diets.
Sex, Age
View SamplesIn development, timing is of the utmost importance, and the timing of various developmental processes are often changed during evolution.
Transcriptional neoteny in the human brain.
Sex, Age, Specimen part
View Samples