This SuperSeries is composed of the SubSeries listed below.
No associated publication
Specimen part
View Samplesgene expression data from wild-type and Bcl6-/- regulatory T cells
Bcl6 controls the Th2 inflammatory activity of regulatory T cells by repressing Gata3 function.
Specimen part
View SamplesGene expression data from wild-type and Bcl6-/- naive CD4 T cells
No associated publication
Specimen part
View SamplesGene expression data from wild-type and Bcl6-/- naive CD4 T cells
No associated publication
Specimen part
View SamplesThe significant changes of hematopoietic cells induced by Xbp1S expression indicate that there is global alteration in gene expression. UPR induces transcription of Xbp1, and phosphorylation of the ER transmembrane kinase IRE1 initiates UPR-mediated mRNA splicing of Xbp1, resulting in the production of Xbp1S, an active form of a basic leucine zipper transcription factor. In the present study, Xbp1S retrovirus vector infected 32cl3 cells show cell cycle arrest and myeloid differentiation. Xbp1S may modulate important genes of differentiation and the cell cycle.
No associated publication
Specimen part
View SamplesCleft palate results from a mixture of genetic and environmental factors and occurs when the bilateral palatal shelves fail to fuse. The objective of this study was to search for new genes involved in mouse palate formation. Gene expression of murine embryonic palatal tissue was analyzed at the various developmental stages before, during, and after palate fusion using GeneChip? microarrays. Ceacam1 was one of the highly up-regulated genes during and after fusion in palate formation, and this was confirmed by quantitative real-time PCR. Immunohistochemical staining showed that CEACAM1 was expressed at a very low level in palatal epithelium before fusion, but highly expressed in the midline of the palate during and after fusion. To investigate the developmental role of CEACAM1, function-blocking antibody was added to embryonic mouse palate in organ culture. Palatal fusion was inhibited by this function-blocking antibody. To investigate the subsequent developmental role of CEACAM1, we characterized Ceacam1-deficient (Ceacam1-/-) mice. Epithelial cells persisted abnormally at the midline of the embryonic palate even on day E16.0, and palatal fusion was delayed in Ceacam1-/- mice. TGF?3 expression, apoptosis, and cell proliferation in palatal epithelium were not effected in the palate of Ceacam1-/-mice. CEACAM1 expression was down-regulated in Tgfb3-/- palate. However, exogenous TGF?3 did not induce CEACAM1 expression. These results suggest that CEACAM1 has roles in both the initiation of palate formation via epithelial cell adhesion and TGF signaling has some indirect effect on CEACAM1.
Regulation of the epithelial adhesion molecule CEACAM1 is important for palate formation.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Age, Specimen part
View SamplesTo uncover molecular mechanisms specifically involved in the pathogenesis of colitis-associated colon cancer (CAC), we studied tumorigenesis in experimental models of CAC and sporadic CRC that mimic characteristics of human CRC. Using comparative whole genome expression profiling, we observed differential expression of epiregulin (Ereg) in mouse models of colitis-associated, but not sporadic colorectal cancer. Similarly, highly significant upregulation of Ereg expression was found in cohorts of patients with colitis-associated cancer in inflammatory bowel disease but not in sporadic colorectal cancer. Furthermore, tumor-associated fibroblasts were identified as major source of Ereg in colitis-associated neoplasias. Functional studies showed that Ereg-deficient mice, although more prone to colitis, are strongly protected from colitis-associated tumors, and data from serial endoscopic studies revealed that Ereg promotes growth rather than initiation of tumors.
Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK.
Sex, Specimen part
View SamplesThe hemibiotrophic fungal pathogen Colletotrichum graminicola is the causal agent of anthracnose disease on maize stalks and leaves. After the formation of appressoria the host cell wall is penetrated by the conversion of appressorial turgor pressure into forceful ejection of a penetration peg. Subsequently, C. graminicola establishes biotrophic hyphae in the penetrated epidermis cell at around 36 hours post inoculation (hpi) until a switch of hyphal morphology and lifestyle takes place during the colonization of neighboring host cells at around 72 hpi. During the ensuing necrotrophic growth, dark necrotic lesions are formed that are visible as anthracnose symptoms. We used microarrays to detail the global programme of gene expression during the infection process of Colletotrichum graminicola in its host plant to get insight into the defense response of this compatible interaction and into the metabolic reprogramming needed to supply the fungus with nutrients.
Common Motifs in the Response of Cereal Primary Metabolism to Fungal Pathogens are not Based on Similar Transcriptional Reprogramming.
Time
View SamplesExpression changes in testes of 15-20 week old mice after knockout of Phf13 were analyzed using Affymetrix mouse genome 430 2.0 expression microarrays. Transcripts on the X- and Y-chromosome were significantly upregulated.
No associated publication
Specimen part
View Samples