The intention was to detect genes that are determining trastuzumab efficiency in HER2-positive breast cancer cell lines with different resistance phenotypes. While BT474 should be sensitive to the drug treatment, HCC1954 is expected to be resistant due to a PI3K mutation. The cell line BTR50 has been derived from BT474 and was cultured to be resistant as well. Based on RNA-Seq data, we performed differential expression analyses on these breast cancer cell lines with and without trastuzumab treatment. In detail, five separate tests were performed, namely resistant cells vs. wild type, i.e. HCC1954 and BTR50 vs. BT474, respectively, and untreated vs. drug treated cells. The significant genes of the first two tests should contribute to resistance. The significant genes of the test BT474 vs. its drug treated version should contribute to the trastuzumab effect. To exclude false positives from the combined gene set (#64), we removed ten genes that were also significant in the test BTR50 vs. its drug treated version. This way we ended up with 54 genes that are very likely to determine trastuzumab efficiency in HER2-positive breast cancer cell lines. Overall design: mRNA profiles of human breast cancer cell lines were generated by deep sequencing using Illumina HiSeq 2000. The cell lines BT474 and HCC1954 were analyzed with and without trastuzumab treatment. HCC1954 is known to be trastuzumab resistant. Additionally, the cell line BTR50 was generated as resistant version of BT474, and was analyzed with and without trastuzumab as well.
mRNA profiling reveals determinants of trastuzumab efficiency in HER2-positive breast cancer.
No sample metadata fields
View SamplesThe objective is to relate changes in expression of DOR/TRP53INP2, a factor involved in thyroid hormone action and autophagy, to body composition in mice fed a fat (FD) or high fat diet (HFD) for 8 days and in a genetically obese mouse model.
Extrinsic and intrinsic regulation of DOR/TP53INP2 expression in mice: effects of dietary fat content, tissue type and sex in adipose and muscle tissues.
Sex, Age, Specimen part
View SamplesThe pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) and its relationship to other lymphomas are largely unknown. This is partly due to the technical challenge of analyzing its rare neoplastic L&H cells, which are dispersed in an abundant non-neoplastic cellular microenvironment. We performed a genome-wide expression study of microdissected lymphocytic and histiocytic (L&H) lymphoma cells in comparison to normal and other malignant B cells, which indicates a relationship of L&H cells to and/or origin from germinal center B cells at transition to memory B cells. L&H cells show a surprisingly high similarity to the tumor cells of T cell-rich B cell lymphoma and classical Hodgkin lymphoma, a partial loss of their B cell phenotype and deregulation of many apoptosis-regulators and putative oncogenes. Importantly, L&H cells are characterized by constitutive NF-B activity and aberrant ERK signaling. Thus, these findings shed new light on the nature of L&H cells, revealed several novel pathogenetic mechanisms in NLPHL, and may help in differential diagnosis and lead to novel therapeutic strategies.
Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis.
No sample metadata fields
View SamplesMesenchymal progenitor cells can be differentiated in vitro into myotubes that exhibit many characteristic features of primary mammalian skeletal muscle fibers. However, in general, they do not show the functional excitation-contraction coupling or the striated sarcomere arrangement typical of mature myofibers. Epigenetic modifications have been shown to play a key role in regulating the progressional changes in transcription necessary for muscle differentiation. In this study, we demonstrate that treatment of murine C2C12 mesenchymal progenitor cells with 10 M of the DNA methylation inhibitor 5-azacytidine (5AC) promotes myogenesis, resulting in myotubes with enhanced maturity as compared to untreated myotubes. Specifically, 5AC treatment resulted in the upregulation of muscle genes at the myoblast stage while at later stages nearly 50 % of the 5AC-treated myotubes displayed a mature, well-defined sarcomere organization as well as spontaneous contractions that coincided with action potentials and intracellular calcium transients. Both the percentage of striated myotubes and their contractile activity could be inhibited by 20 nM TTX, 10 M ryanodine and 100 M nifedipine, suggesting that action potential-induced calcium transients are responsible for these characteristics. Our data suggest that genomic demethylation induced by 5AC overcomes an epigenetic barrier that prevents untreated C2C12 myotubes from reaching full maturity.
Epigenetics: DNA demethylation promotes skeletal myotube maturation.
Cell line, Treatment
View SamplesThis experiment was set up in order to identify the (direct) transcriptional targets of the Ethylene Response Factor 115 (ERF115) transcription factor. Because ERF115 expression occurs in quiescent center (QC) cells and strong effects on the QC cells were observed in ERF115 overexpression plants, root tips were harvested for transcript profiling in order to focus on root meristem and QC specific transcriptional targets.
ERF115 controls root quiescent center cell division and stem cell replenishment.
Age, Specimen part
View SamplesThe canonical role of eEF1A is to deliver the aminoacyl tRNA to the ribosome, we have used the yeast model system to investigate further roles for this protein.
Inappropriate expression of the translation elongation factor 1A disrupts genome stability and metabolism.
No sample metadata fields
View SamplesImmune interferon beta and gamma are essential for mammalian host defence against intracellular pathogens.
GBPs Inhibit Motility of Shigella flexneri but Are Targeted for Degradation by the Bacterial Ubiquitin Ligase IpaH9.8.
Cell line
View SamplesERG overexpression was conducted in stably transfected K562 cell line with a tet-on inducible plasmid habouring ERG3. Prolonged induction of ERG (8 days) produced spindle cell shape changes whereas non-induced cells retained the round morphology. In oder to determine the genes responsible for inducing cell shape changes, a genome wide transcriptional screen was conducted.
ERG induces a mesenchymal-like state associated with chemoresistance in leukemia cells.
Cell line, Treatment
View SamplesBACKGROUND
Emmprin and survivin predict response and survival following cisplatin-containing chemotherapy in patients with advanced bladder cancer.
No sample metadata fields
View SamplesING1b and GADD45a are nuclear proteins involved in the regulation of cell growth, apoptosis and DNA repair. We previously found that ING1b is required to target GADD45a-mediated active DNA-demethylation via TET1 to specific loci. In order to study the impact of ING1-GADD45a on gene expression, we compared the expression profile of wildtype mouse embryonic fibroblasts (MEFs) with Ing1- and Gadd45a- single- or double-knockout (DKO) MEFs. Overall design: Gene expression profiling in all 4 genotypes of undifferentiated MEFs in triplicates.
Impaired DNA demethylation of C/EBP sites causes premature aging.
Sex, Specimen part, Cell line, Subject
View Samples