Glucocorticoids are used for the treatment of inflammatory conditions but they also cause many side-effects.
Glucocorticoids induce gastroparesis in mice through depletion of l-arginine.
Treatment, Time
View SamplesBackground: The prevalence of type 2 diabetes has increased dramatically in recent decades. Increasing brown adipose tissue (BAT) mass and activity has recently emerged as an interesting approach to not only increase energy expenditure, but also improve glucose homeostasis. BAT can be recruited by prolonged cold exposure in lean, healthy humans. Here, we tested whether cold acclimation could have therapeutic value for patients with type 2 diabetes by improving insulin sensitivity. Methods: Eight type 2 diabetic patients (age 59.35.8 years, BMI 29.83.2 kg/m2) followed a cold acclimation protocol, consisting of intermittent cold exposure (6 hours/day, 14-14.5 C) for 12 consecutive days. Before and after cold acclimation, cold-induced BAT activity was assessed by [18F]FDG-PET/CT scanning, insulin sensitivity at thermoneutrality by a hyperinsulinemic-euglycemic clamp, and muscle and WAT biopsies were taken. Results: Cold-induced BAT activity was low, but increased in all patients upon cold acclimation (SUV from 0.400.29 to 0.630.78, p<0.05). Interestingly, insulin sensitivity showed a very pronounced 40% increase upon cold acclimation (glucose rate of disappearance from 14.94.1 to 20.56.9 mol kg-1 min-1, p<0.05). A 40% increase in insulin sensitivity cannot be explained by BAT glucose uptake, in fact basal skeletal muscle GLUT4 content and translocation was markedly increased after cold acclimation, without effects on insulin signaling or AMPk activation. Conclusions: Regular mild cold exposure has marked effects on insulin sensitivity, which are accompanied by small increases in BAT activity and more pronounced effects on skeletal muscle. These data suggest a novel therapeutic option for the treatment of type 2 diabetes.
Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus.
Subject
View SamplesThe transcriptomics changes induced in the human liver cell line HepG2 by 17 hepatotoxic compounds, 5 non-hepatotoxic compounds and solvent controls after treatment for 24h
Classification of hepatotoxicants using HepG2 cells: A proof of principle study.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative cross-omics analysis in primary mouse hepatocytes unravels mechanisms of cyclosporin A-induced hepatotoxicity.
Specimen part
View SamplesThe transcriptomics changes induced in Primary Mouse Hepatocytes by Cyclosporin A after treatment for 24h and 48h
Integrative cross-omics analysis in primary mouse hepatocytes unravels mechanisms of cyclosporin A-induced hepatotoxicity.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro.
Specimen part, Cell line, Time
View SamplesThe transcriptomics changes induced in the human liver cell line HepG2 by Cyclosporin A after treatment for 12h, 24h, 48h and 72h
Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro.
Specimen part, Cell line, Time
View SamplesBACKGROUND: We have previously reported gene expression changes in the bronchial airway epithelium of active chronic smokers. In this study, we investigate the effects of Acute Smoke Exposure (ASE) from cigarettes on airway epithelial gene expression. METHODS: Bronchial airway epithelial cell brushings were collected via fiberoptic bronchoscopy from 63 individuals without recent exposure to cigarette smoke (> 2 days), at baseline and at 24 hours after smoking three cigarettes. RNA from these samples was profiled on Affymetrix Human Gene 1.0 ST microarrays. Differential gene expression was assessed using linear modeling and compared to previous smoking-related gene-expression signatures using Gene Set Enrichment Analysis (GSEA). RESULTS: We identified 91 genes differentially expressed 24-hours after exposure to three cigarettes (FDR < 0.25). ASE induces genes involved in xenobiotic metabolism, oxidative stress, and inflammation; and represses genes involved in cilium morphogenesis, and cell cycle. Genes induced by in vivo ASE are concordantly altered by ASE in vitro. While many genes altered by ASE are altered similarly in the airway of chronic smokers, metallothionein genes were induced by ASE and suppressed among chronic smokers. Metallothioneins were also suppressed in the bronchial airway of current and former chronic smokers with lung cancer relative to those with benign disease. CONCLUSIONS: Acute exposure to as little as three cigarettes alters gene-expression in bronchial airway epithelium in a manner that largely resembles the changes seen in chronic active smokers. The difference in the short-term and long-term effects of smoking on metallothionein expression and its relationship to lung cancer requires further study given these enzymes role in responding to oxidative stress.
Impact of acute exposure to cigarette smoke on airway gene expression.
Sex
View SamplesDendritic cells (DCs) play a pivotal role in the regulation of the immune response. DC development and activation is finely orchestrated through transcriptional programs. GATA1 transcription factor is required for murine DC development and data suggests that it might be involved in the fine-tuning of the life span and function of activated DCs. We generated DC-specific Gata1 knockout mice (Gata1-KODC), which presented a 20% reduction of splenic DCs, partially explained by enhanced apoptosis. RNA-Seq analysis revealed a number of deregulated genes involved in cell survival, migration and function. DC migration towards peripheral lymph nodes was impaired in Gata1-KODC mice. Migration assays performed in vitro showed that this defect was selective for CCL21, but not CCL19. Interestingly, we show that Gata1-KODC DCs have reduced polysialic acid levels on their surface, which is a known determinant for the proper migration of DCs towards CCL21. Overall design: Dendritic cells from Gata1 knock-out or wild-type mice were stimulated with LPS of unstimulated (under steady state), 2 biological replicates each
GATA1-Deficient Dendritic Cells Display Impaired CCL21-Dependent Migration toward Lymph Nodes Due to Reduced Levels of Polysialic Acid.
No sample metadata fields
View SamplesTranscriptome analysis following Bcl6 induction (24h doxycycline) in mouse ES-cell-derived cortical progenitors (differentiation day 12) shows that Bcl6 promotes a neurogenic transcription program and represses selective genes of the main proliferative pathways. Overall design: RNA-seq screen for Bcl6-elicited gene expression changes in in vitro cortical progenitors (n=4)
Cortical Neurogenesis Requires Bcl6-Mediated Transcriptional Repression of Multiple Self-Renewal-Promoting Extrinsic Pathways.
Treatment, Subject
View Samples