The accumulation of irreparable cellular damage restricts healthy lifespan after acute stress or natural aging. Senescent cells are thought to impair tissue function and their genetic clearance can successfully delay features of aging. Identifying how senescent cells avoid apoptosis would allow for the prospective design of anti-senescence compounds to address whether homeostasis can be restored. Here, we identify FOXO4 as a pivot in the maintenance of senescent cell viability. We designed a FOXO4-based peptide which selectively competes for interaction of FOXO4 with p53. In senescent cells, this results in p53 nuclear exclusion and cell-intrinsic apoptosis. Importantly, under conditions where it was well tolerated, the FOXO4 peptide restored liver function after Doxorubicin-induced chemotoxicity. Moreover, in fast aging XpdTTD/TTD, as well as in naturally aged mice the FOXO4 peptide could counteract the loss of fitness, fur density and renal function. Thus, it is possible to therapeutically target senescent cells and thereby effectively counteract senescence-associated loss of tissue homeostasis. Overall design: mRNA expression levels are compared between IR-induced senescent and proliferating IMR90 cells in triplicate
Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging.
Specimen part, Cell line, Subject
View SamplesDendritic cells (DCs) are professional antigen-presenting cells whose activity is intrinsically linked to the microenvironment. Hypoxia is a condition of low oxygen tension occurring in inflammatory tissues that creates a special microenvironment conditioning cell physiology. We studied the effects of hypoxia on the differentiation of human monocytes into DCs. Immature DCs were differentiated in vitro from human monocytes under normoxic (iDCs) or hypoxic (Hi-DCs) conditions and the gene expression profile was determined. Hi-DCs expressed novel hypoxia-inducible genes and were characterized by up-regulation of pathways associated with cell movement/migration.
Transcriptome of hypoxic immature dendritic cells: modulation of chemokine/receptor expression.
No sample metadata fields
View SamplesDendritic cells (DCs) are professional antigen-presenting cells whose activity is intrinsically linked to the microenvironment. Hypoxia is a condition of low oxygen tension occurring in inflammatory tissues that creates a special microenvironment conditioning cell physiology. We studied the effects of hypoxia on the differentiation of human monocytes into DCs and maturation into mature DCs. Mature DCs were differentiated in vitro from human monocytes under normoxic or hypoxic conditions and the gene expression profile was determined.
Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo.
Specimen part, Disease, Treatment
View SamplesProfile gene expression from tumors that develop in mice bearing conditional activation of EWS-ATF1, compared to control mouse tissues from the chest wall as well as tumor samples from mouse models of synovial sarcoma and osteosarcoma achieved by conditional disruption of Rb1 and p53 Overall design: 13 clear cell sarcomas (5 started with Rosa26CreER, 4 with TATCre, 2 with Prx1CreERT2, and 2 with Bmi1IRESCreERT2), 7 osteosarcomas, 6 synovial sarcomas, 6 control samples
Modeling clear cell sarcomagenesis in the mouse: cell of origin differentiation state impacts tumor characteristics.
Specimen part, Subject
View SamplesHoxb8 mutant mice show compulsive behavior similar to trichotillomania, a human obsessive-compulsive-spectrum disorder. The only Hoxb8 lineage-labeled cells in the brains of mice are microglia, suggesting that defective Hoxb8 microglia caused the disorder. What is the source of the Hoxb8 microglia? It has been posited that all microglia progenitors arise at embryonic day (E) 7.5 during yolk sac hematopoiesis, and colonize the brain at E9.5. In contrast, we show the presence of two microglia subpopulations: canonical, non-Hoxb8 microglia and Hoxb8 microglia. Unlike non- Hoxb8 microglia, Hoxb8 microglia progenitors appear to be generated during the second wave of yolk sac hematopoiesis, then detected in the aorto-gonad-mesonephros (AGM) and fetal liver, where they are greatly expanded, prior to infiltrating the E12.5 brain. Further, we demonstrate that Hoxb8 hematopoietic progenitor cells taken from fetal liver are competent to give rise to microglia in vivo. Although the two microglial subpopulations are very similar molecularly, and in their response to brain injury and participation in synaptic pruning, they show distinct brain distributions which might contribute to pathological specificity. Non-Hoxb8 microglia significantly outnumber Hoxb8 microglia, but they cannot compensate for the loss of Hoxb8 function in Hoxb8 microglia, suggesting further crucial differences between the two subpopulations. Overall design: Green (non-Hoxb8, control) and yellow (Hoxb8, experimental) microglia data sets
Correction: Two distinct ontogenies confer heterogeneity to mouse brain microglia (doi: 10.1242/dev.152306).
Age, Specimen part, Cell line, Subject
View SamplesEpendymal tumors across age groups have been classified and graded solely by histopathology. It is, however, commonly accepted that this classification scheme has limited clinical utility based on its lack of reproducibility in predicting patient outcome. We aimed at establishing a reliable molecular classification using DNA methylation fingerprints and gene expression data of the tumors on a large cohort of 500 tumors. Nine robust molecular subgroups, three in each anatomic compartment of the central nervous system (CNS), were identified.
Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups.
Sex, Specimen part
View SamplesAtypical teratoid/rhabdoid tumor (ATRT) is one of the most common brain tumors in infants. Although the prognosis of ATRT patients is poor, some patients respond favorably to current treatments, suggesting molecular inter-tumor heterogeneity. To investigate this further, we genetically and epigenetically analyzed a large series of human ATRTs. Three distinct molecular subgroups of ATRTs, associated with differences in demographics, tumor location, and type of SMARCB1 alterations, were identified. Whole-genome DNA and RNA sequencing found no recurrent mutations in addition to SMARCB1 that would explain the differences between subgroups. Whole-genome bisulfite sequencing and H3K27Ac chromatin-immunoprecipitation sequencing of primary tumors, however, revealed clear differences, leading to the identification of subgroup-specific regulatory networks and potential therapeutic targets.
Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes.
Sex, Age
View SamplesAffymetrix Hu133 GeneCHIP Microarray data for Control and c-MYC knock-down (KD) human cancer cell lines.
Novel c-MYC target genes mediate differential effects on cell proliferation and migration.
No sample metadata fields
View SamplesWe implemented an optimized processing, using alternative Chip Description Files (CDFs) and fRMA normalization, which improve the quality of downstream analysis.
Accurate data processing improves the reliability of Affymetrix gene expression profiles from FFPE samples.
Specimen part
View SamplesIn this study we obtained gene expression profiles of MCFS and parental MCF7 cell lines using Illumina microarrays
In-depth characterization of breast cancer tumor-promoting cell transcriptome by RNA sequencing and microarrays.
Specimen part, Cell line
View Samples