small RNA libraries from wild-type and Hen1 mutant testes were made with either polyA tailing (VASAGFPHen1minus/plus) or adapter ligation (Hen1Testis and WTTestis) and sequenced on an Illumina GAII platform. Overall design: RNA was isolated from total testis tissue of both Hen1 wildtype and Hen1 mutant animals. After size selection from gel, the small RNA libraries wre made.
Hen1 is required for oocyte development and piRNA stability in zebrafish.
No sample metadata fields
View SamplesPancreatic ductal adenocarcinoma (PDAC) is a heterogeneous cancer in which differences in survival rates might be related to a variety in gene expression profiles. Although the molecular biology of PDAC begins to be revealed, genes or pathways that specifically drive tumour progression or metastasis are not well understood. Therefore, we performed microarray analyses on whole-tumour samples of 2 human PDAC subpopulations with similar clinicopathological features, but extremely distinct survival rates after potentially curative surgery, i.e., good outcome (OS and DFS>50months) versus bad outcome (OS<19months and DFS<7months). Additionally, liver- and peritoneal metastases were analysed and compared to primary cancer tissue. The integrin and ephrin receptor families were upregulated in all PDAC samples, irrespective of outcome, supporting an important role of the interaction between pancreatic cancer cells and the surrounding desmoplastic reaction in tumorigenesis and cancer progression. Moreover, some components, such as ITGB1 and EPHA2, were upregulated in PDAC samples with a poor outcome, Additionally, overexpression of the non-canonical Wnt/-catenin pathway and EMT genes in PDAC samples with bad versus good outcome suggests their contribution to the invasiveness of pancreatic cancer, with -catenin being also highly upregulated in metastatic tissue. Thus, we conclude that components of the integrin and ephrin pathways and EMT-related genes might serve as molecular markers in pancreatic cancer as their expression seems to be related with prognosis.
Molecular markers associated with outcome and metastasis in human pancreatic cancer.
Sex, Age, Specimen part, Disease stage
View SamplesAs a result of ancestral whole genome and small-scale duplication events, the genome of Saccharomyces cerevisiae's, and of many eukaryotes, still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S. cerevisiae current lifestyle favoring fermentative metabolism even in the presence of oxygen and characterized by a high glycolytic capacity. In modern S. cerevisiae, the 12 glycolytic reactions leading to the biochemical conversion from glucose to ethanol are encoded by 27 paralogs. In order to experimentally explore the physiological role of this genetic redundancy, a yeast strain with a minimal set of 14 paralogs was constructed (MG strain). Remarkably, a combination of quantitative, systems approach and of semi-quantitative analysis in a wide array of growth environments revealed the absence of phenotypic response to the cumulative deletion of 13 glycolytic paralogs. This observation indicates that duplication of glycolytic genes is not a prerequisite for achieving the high glycolytic fluxes and fermentative capacities that are characteristic for S. cerevisiae and essential for many of its industrial applications and argues against gene dosage effects as a means for fixing minor glycolytic paralogs in the yeast genome. MG was carefully designed and constructed to provide a robust, prototrophic platform for quantitative studies, and is made available to the scientific community. Overall design: The goals of the present study are to experimentally explore genetic redundancy in yeast glycolysis by cumulative deletion of minor paralogs and to provide a new experimental platform for fundamental yeast research by constructing a yeast strain with a functional 'minimal glycolysis'. To this end, we deleted 13 minor paralogs, leaving only the 14 major paralogs for the S. cerevisiae glycolytic pathway. The cumulative impact of deleting all minor paralogs was investigated by two complementary approaches. A first, quantitative analysis focused on the impact on glycolytic flux under a number of controlled cultivation conditions that, in wild-type strains, result in different glycolytic fluxes. These quantitative growth studies were combined with transcriptome, enzyme-activity and intracellular metabolite assays to capture potential small phenotypic effects. A second, semi-quantitative characterization explored the phenotype of the 'minimal glycolysis' strain under a wide array of experimental conditions to identify potential context-dependent phenotypes
The Genetic Makeup and Expression of the Glycolytic and Fermentative Pathways Are Highly Conserved Within the <i>Saccharomyces</i> Genus.
Cell line, Subject
View SamplesExpression profiles of anti-TNF responders were compared to profiles of anti-TNF non-responders in order to identify an expression signature for anti-TNF response
Validation study of existing gene expression signatures for anti-TNF treatment in patients with rheumatoid arthritis.
Specimen part, Disease, Disease stage, Treatment
View SamplesBackground
Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data.
No sample metadata fields
View SamplesTo evaluate the prognostic relevance of molecular subtypes and key transcription factors in pancreatic ductal adenocarcinoma (PDAC), we performed gene expression analysis of whole-tumor tissue obtained from 118 surgically resected PDAC and 13 control samples.
Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma.
Specimen part
View SamplesAffymetrix expression profiling was used to evaluate the association between IL13R2 expression, and mesenchymal, proneural, classical and neural signature genes expression for glioma subclasses defined by Verhaak et al (Cancer Cell; 2010).
Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis.
Cell line, Treatment
View SamplesPurpose: To explore the side population (SP) in pancreatic ductal adenocarcinoma (PDAC) for its gene expression profile and its association to cancer stem cells (CSC) and to evaluate the value of genes from its gene signature on patient survival.
Human pancreatic cancer contains a side population expressing cancer stem cell-associated and prognostic genes.
Sex, Age, Specimen part, Disease stage
View SamplesSUMMARY: This article presents a predictive molecular signature that marks the early onset of fibrosis in a translational nonalcoholic steatohepatitis mouse model. Overlap of genes and processes with human nonalcoholic steatohepatitis and a list of top candidate biomarkers for early fibrosis are described. BACKGROUND & AIMS: The incidence of nonalcoholic steatohepatitis (NASH) is increasing. The pathophysiological mechanisms of NASH and the sequence of events leading to hepatic fibrosis are incompletely understood. The aim of this study was to gain insight into the dynamics of key molecular processes involved in NASH and to rank early markers for hepatic fibrosis. METHODS: A time-course study in low-density lipoprotein–receptor knockout. Leiden mice on a high-fat diet was performed to identify the temporal dynamics of key processes contributing to NASH and fibrosis. An integrative systems biology approach was used to elucidate candidate markers linked to the active fibrosis process by combining transcriptomics, dynamic proteomics, and histopathology. The translational value of these findings were confirmed using human NASH data sets. RESULTS: High-fat-diet feeding resulted in obesity, hyperlipidemia, insulin resistance, and NASH with fibrosis in a time-dependent manner. Temporal dynamics of key molecular processes involved in the development of NASH were identified, including lipid metabolism, inflammation, oxidative stress, and fibrosis. A data-integrative approach enabled identification of the active fibrotic process preceding histopathologic detection using a novel molecular fibrosis signature. Human studies were used to identify overlap of genes and processes and to perform a network biology-based prioritization to rank top candidate markers representing the early manifestation of fibrosis. CONCLUSIONS: An early predictive molecular signature was identified that marked the active profibrotic process before histopathologic fibrosis becomes manifest. Early detection of the onset of NASH and fibrosis enables identification of novel blood-based biomarkers to stratify patients at risk, development of new therapeutics, and help shorten (pre)clinical experimental time frames. Keywords: Systems Biology; Metabolic Syndrome; Liver Disease; Diagnosis. Overall design: In total 9 treatment groups: 5 Control groups (chow = standard diet; t=0, 6, 12, 18, 24 weeks), 4 Treatment groups (HFD = High Fat diet; 6, 12, 18, 24 weeks).
Uncovering a Predictive Molecular Signature for the Onset of NASH-Related Fibrosis in a Translational NASH Mouse Model.
Specimen part, Subject
View SamplesTo identify mechanisms behind immunosuppression during virus infections, we infected mice with LCMV-Armstrong and LCMV-Clone 13 expression patterns. LCMV-Armstrong induces a T-cell reaction that resolves infection within 8-10 days, while LCMV-Clone13 generates a persisten infection through immunosuppression.
Blockade of chronic type I interferon signaling to control persistent LCMV infection.
Specimen part
View Samples