Loss of the tumor suppressor CHD5 frequently occurs during neuroblastoma progression.
The chromatin remodeling factor CHD5 is a transcriptional repressor of WEE1.
Specimen part, Cell line
View SamplesThe 1.6 Mbp deletion on chromosome 3q29 is associated with a range of neurodevelopmental disorders, including schizophrenia, autism, microcephaly, and intellectual disability. Despite its importance towards neurodevelopment, the role of individual genes, genetic interactions, and disrupted biological mechanisms underlying the deletion have not been thoroughly characterized. Here, we used quantitative methods to assay Drosophila melanogaster and Xenopus laevis models with tissue-specific individual and pairwise knockdown of 14 homologs of genes within the 3q29 region. We identified developmental, cellular, and neuronal phenotypes for multiple homologs of 3q29 genes, potentially due to altered apoptosis and cell cycle mechanisms during development. Using the fly eye, we screened for 314 pairwise knockdowns of homologs of 3q29 genes and identified 44 interactions between pairs of homologs and 34 interactions with other neurodevelopmental genes. Interestingly, NCBP2 homologs in Drosophila (Cbp20) and X. laevis (ncbp2) enhanced the phenotypes of homologs of the other 3q29 genes, leading to significant increases in apoptosis that disrupted cellular organization and brain morphology. These cellular and neuronal defects were rescued with overexpression of the apoptosis inhibitors Diap1 and xiap in both models, suggesting that apoptosis is one of several potential biological mechanisms disrupted by the deletion. NCBP2 was also highly connected to other 3q29 genes in a human brain-specific interaction network, providing support for the relevance of our results towards the human deletion. Overall, our study suggests that NCBP2-mediated genetic interactions within the 3q29 region disrupt apoptosis and cell cycle mechanisms during development. Overall design: mRNA-sequencing of Drosophila neuron-specific RNAi knockdown (whole head) for four individual 3q29 homologs (DLG1, NCBP2, FBXO45, and PAK2), two pairwise knockdowns of 3q29 homologs (NCBP2/DLG1 and NCBP2/FBXO45), and two VDRC wild-type controls (GD and KK backgrounds). Sequencing was performed using Illumina HiSeq 2000 on three biological replicates per sample, with two-three technical replicates per biological replicate.
NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models.
Specimen part, Subject
View SamplesCD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation.
Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150).
Specimen part
View SamplesCD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation.
Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150).
No sample metadata fields
View SamplesCortical interneurons display a remarkable diversity in their morphology, physiological properties and connectivity. Elucidating the molecular determinants underlying this heterogeneity is essential for understanding interneuron development and function. We discovered that alternative splicing differentially regulates the integration of somatostatin- and parvalbumin-expressing interneurons into nascent cortical circuits through the cell-type specific tailoring of mRNAs. Specifically, we identified a role for the activity-dependent splicing regulator Rbfox1 in the development of cortical interneuron subtype specific efferent connectivity. Our work demonstrates that Rbfox1 mediates largely non-overlapping alternative splicing programs within two distinct but related classes of interneurons. Overall design: RNA-seq of FACS sorted PV+ and SST+ cortical interneuronals at P8 of wt and conditional Rbfox1 Kos
Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons.
Specimen part, Subject
View SamplesAnalysis of in vivo antigen-specific (LCMV-specific, SMARTA TCR transgenic) follicular helper CD4 T cells (CXCR5high),versus non-follicular helper CD4 T cells (CXCR5low), eight days after viral infection. A paper including data analysis of these experiments has been accepted for publication (Robert J. Johnston et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of follicular helper CD4 T cell differentiation).
Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation.
Specimen part
View SamplesGene expression profiles of normal kidney (3 technical replicates) and a renal tumor (3 technical replicates) from a hereditary leiomyomatosis and renal cell cancer (HLRCC) patient carrying a germline mutation in the fumarate hydratase (FH) gene.
Expression profiling in progressive stages of fumarate-hydratase deficiency: the contribution of metabolic changes to tumorigenesis.
Specimen part
View SamplesEnd stage renal disease (ESRD) is associated with hyperplastic-cystic remodelling of the kidneys (ARCD) and increased rate of kidney tumours. Using the Affymetrix oligoarray, we have established the gene expression signature of ESRD/ARCD kidneys and compared to those of normal kidneys and of distinct types of renal tumours.
Gene expression profiling of chromophobe renal cell carcinomas and renal oncocytomas by Affymetrix GeneChip using pooled and individual tumours.
No sample metadata fields
View SamplesThis study analysed the transcriptome of mouse Rex1GFPd2 cells before and during early differentiation and further investigated the transcriptomic changes of Nprl2 and Tsc2 knockout. Overall design: RNA samples were collected before differentiation, and on day 1, 2, 3 of differentiation; RNA samples of Rex1GFP positive population were collected for Nprl2, Tsc2 knockout and compared to wild type cells.
Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution.
Specimen part, Cell line, Subject
View SamplesAlthough small RNAs efficiently control transposition activity of most transposons in the host genome, such immune system is not always applicable against new transposon's invasions. Here we explored a possibility to introduce potentially mobile copy of the Penelope retroelement previously implicated in hybrid dysgenesis syndrome in Drosophila virilis into the genomes of two distant Drosophila species. The consequences of such introduction were monitored at different phases after experimental colonization as well as in D. virilis species which is apparently in the process of ongoing Penelope invasion. We investigated the expression of Penelope and biogenesis of Penelope-derived small RNAs in D. virilis and D. melanogaster strains originally lacking active copies of this element after experimental Penelope invasion. These strains were transformed by constructs containing intact Penelope copies. We show that immediately after transformation, which imitates the first stage of retroelement invasion, Penelope undergoes transposition predominantly in somatic tissues, and may produce siRNAs that are apparently unable to completely silence its activity. However, at the later stages of colonization Penelope copies may jump into one of the piRNA-clusters, which results in production of homologous piRNAs that are maternally deposited and can silence euchromatic transcriptionally active copies of Penelope in trans and, hence, prevent further amplification of the invader in the host genome. Intact Penelope copies and different classes of Penelope-derived small RNAs were found in most geographical strains of D. virilis collected throughout the world. Importantly, all strains of this species containing full-length Penelope tested do not produce gonadal sterility in dysgenic crosses and, hence, exhibit neutral cytotype. In order to understand whether RNA interference mechanism able to target Penelope operates in related species of the virilis group we correlated the presence of full-length and potentially active Penelope with the occurrence of piRNAs homologous to this TE in the ovaries of species comprising the group. It was demonstrated, that Penelope-derived piRNAs are present in all virilis group species containing full-length but transcriptionally silent copies of this element that probably represent the remnants of its previous invasions taking place in the course of the virilis species divergent evolution. Overall design: piRNA size profile (23-29nt) was examined in D. melanogaster strains, where Penelope-piRNAs are detected by Northern blot
Evolution and dynamics of small RNA response to a retroelement invasion in Drosophila.
Specimen part, Cell line, Subject
View Samples