This SuperSeries is composed of the SubSeries listed below.
Topoisomerases facilitate transcription of long genes linked to autism.
Age, Specimen part, Treatment
View SamplesTopoisomerases are necessary for the expression of neurodevelopmental genes, and are mutated in some patients with autism spectrum disorder (ASD). We have studied the effects of inhibitors of Topoisomerase 1 (Top1) and Topoisomerase 2 (Top2) enzymes on mouse cortical neurons. We find that topoisomerases selectively inhibit long genes (>100kb), with little effect on all other gene expression. Using ChIPseq against RNA Polymerase II (Pol2) we show that the Top1 inhibitor topotecan blocks transcriptional elongation of long genes specifically. Many of the genes inhibited by topotecan are candidate ASD genes, leading us to propose that topoisomerase inhibition might contribute to ASD pathology.
Topoisomerases facilitate transcription of long genes linked to autism.
Specimen part, Treatment
View SamplesTopoisomerases are necessary for the expression of neurodevelopmental genes, and are mutated in some patients with autism spectrum disorder (ASD). We have studied the effects of inhibitors of Topoisomerase 1 (Top1) and Topoisomerase 2 (Top2) enzymes on mouse cortical neurons. We find that topoisomerases selectively inhibit long genes (>100kb), with little effect on all other gene expression. Using ChIPseq against RNA Polymerase II (Pol2) we show that the Top1 inhibitor topotecan blocks transcriptional elongation of long genes specifically. Many of the genes inhibited by topotecan are candidate ASD genes, leading us to propose that topoisomerase inhibition might contribute to ASD pathology. Overall design: [Mouse] 5 biological replicates of transcriptome sequencing (RNAseq) from topotecan treated neurons and vehicle treated controls; Pol2 ChIPseq of topotecan and vehicle treated neurons [Human] Transcriptome sequencing (RNAseq) from topotecan treated neurons and vehicle treated control.
Topoisomerases facilitate transcription of long genes linked to autism.
No sample metadata fields
View SamplesUsing microarrays, genome-wide RNA expression was profiled and compared for in vitro fertilization (IVF) - derived blastocysts and embryos undergoing degenerative development up to the same time point. Surprisingly similar transcriptomic profiles were found in degenerative embryos and blastocysts. Nonetheless, we identified 67 transcripts that significantly differed between these two groups of embryos at a 15% false discovery rate, including 33 transcripts showing at least a two-fold difference. Several signaling and metabolic pathways were found to be associated with the developmental status of embryos, among which were previously known important steroid biosynthesis and cell communication pathways in early embryonic development.
Transcriptomic profiling of bovine IVF embryos revealed candidate genes and pathways involved in early embryonic development.
Specimen part
View SamplesFind the casual relationship between gene expression network and cellular phenotype at single cell resolution. We collected donated human pre-implatation embryos, and the embryonic stem cells derived from them, isolate individual cells, prepared single cell cDNAs, and sequenced them by HiSeq2000. Then we analyzed the expression of known RefSeq genes. Overall design: We get transcriptome of 124 individual cells from human pre-implantation embryos and human embryonic stem cells by applying single cell RNA-seq technique we recently developed[1][2][3][4]. We did in-depth bioinformatic analysis to these data and found very dynamic expression of protein-coding genes. [1] Tang, F. et al. (2010a) Tracing the Derivation of Embryonic Stem Cells from the Inner Cell Mass by Single-Cell RNA-Seq Analysis. Cell Stem Cell 6, 468-478. [2] Tang, F. et al. (2010b) RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protocols 5, 516-535. [3] Tang, F. et al. (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Meth 6, 377-382. [4] Tang, F. et al. (2011) Development and applications of single-cell transcriptome analysis. Nat Meth 8, S6-S11.
Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells.
Specimen part, Subject
View SamplesThe expression of adipogenic genes is decreased in obesity and diabetes mellitus
The expression of adipogenic genes is decreased in obesity and diabetes mellitus.
No sample metadata fields
View SamplesIsogenic UPF1+ or upf1- yeast strains were treated with 10 ug/ml thiolutin to inhibit global transcription. Targets were obtained from 16 time points: 0, 2, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 60 minutes after transcription inhibition. Three biological replicates of each were generated and the expression profiles were determined using Affymetrix YG-S98 arrays. Comparisons between the sample groups allow the identification of genes with differential expression over time between UPF1+ and upf1-.
Impact of nonsense-mediated mRNA decay on the global expression profile of budding yeast.
No sample metadata fields
View SamplesObesity is a strong risk factor for the development of type 2 diabetes. We have previously reported that in adipose tissue of obese (ob/ob) mice, the expression of adipogenic genes is decreased. When made genetically obese, the BTBR mouse strain is diabetes susceptible and the C57BL/6J (B6) strain is diabetes resistant. We used DNA microarrays and RT-PCR to compare the gene expression in BTBR-ob/ob versus B6-ob/ob mice in adipose tissue, liver, skeletal muscle, and pancreatic islets. Our results show: 1) there is an increased expression of genes involved in inflammation in adipose tissue of diabetic mice; 2) lipogenic gene expression was lower in adipose tissue of diabetes-susceptible mice, and it continued to decrease with the development of diabetes, compared with diabetes-resistant obese mice; 3) hepatic expression of lipogenic enzymes was increased and the hepatic triglyceride content was greatly elevated in diabetes-resistant obese mice; 4) hepatic expression of gluconeogenic genes was suppressed at the prediabetic stage but not at the onset of diabetes; and 5) genes normally not expressed in skeletal muscle and pancreatic islets were expressed in these tissues in the diabetic mice. We propose that increased hepatic lipogenic capacity protects the B6-ob/ob mice from the development of type 2 diabetes. Diabetes 52:688700, 2003
Gene expression profiles of nondiabetic and diabetic obese mice suggest a role of hepatic lipogenic capacity in diabetes susceptibility.
Sex, Age
View SamplesAn in-depth analysis of miRNomes in 3 human myeloid leukemia cell lines was carried out to comprehensively identify miRNAs that distinguish acute and chronic myeloid leukemias and relate to myeloid cell differentiation. Overall design: Characterization the miRNomes in 3 myeloid leukemia cell lines.
Characterization of miRNomes in acute and chronic myeloid leukemia cell lines.
Specimen part, Disease, Cell line, Subject
View SamplesLoss of stearoyl-CoA desaturase-1 function protects mice against adiposity.
Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity.
No sample metadata fields
View Samples