The eukaryotic cytoplasmic chaperonin-containing TCP-1 (CCT) is a complex formed by two back-to-back stacked hetero-octameric rings that assists the folding of actins, tubulins and other proteins in an ATP-dependent manner. Here, we decided to test the significance of the hetero-oligomeric nature of CCT for its function by introducing, in each of the eight subunits in turn, an identical mutation at a position involved in ATP binding and conserved in all the subunits, in order to establish the extent of individuality of the various subunits. Our results show that these identical mutations lead to dramatically different phenotypes. For example, cells with the mutation in CCT2 have an excess of actin patches and are the only pseudo-diploid strain. By contrast, cells with the mutation in CCT7 are the only ones to accumulate juxta-nuclear protein aggregates that may reflect the absence of stress response in this strain. System-level analysis of the strains using RNA microarrays reveals connections between CCT and several cellular networks including ribosome biogenesis and TOR2 that help to explain the phenotypic variability observed
Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes.
No sample metadata fields
View SamplesComparisons of expression profils of human undiferentiated ES cells and Mesenchymal ES cells
Derivation of multipotent mesenchymal precursors from human embryonic stem cells.
No sample metadata fields
View SamplesSnai1 is a master factor of epithelial to mesenchymal transitioin (EMT), however, its role in embryonic stem cell (ESC) differentiation and lineage commitment remains undefined.
Snail1-dependent control of embryonic stem cell pluripotency and lineage commitment.
Specimen part
View SamplesSnail1 is a master epithelial-mesenchymal trisition (EMT) factor but its role in ESC maintenance is unknown.
Snail1-dependent control of embryonic stem cell pluripotency and lineage commitment.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock.
Specimen part
View SamplesRNA polymerase III (pol III) synthesizes short non-coding RNAs, many of which, including tRNAs, Rpph1 RNA, Rn5s rRNA, and Rmrp RNA, are essential for translation. Accordingly, pol III activity is tightly regulated with cell growth and proliferation by factors such as MYC, RB1, TRP53, and MAF1. MAF1 is a repressor of pol III transcription whose activity is controlled by phosphorylation; in particular, it is inactivated through phosphorylation by mTORC1 kinase, a sensor of nutrient availability. Pol III regulation is thus sensitive to environmental cues, yet a diurnal profile of pol III transcription activity is so far lacking. Here we document pol III occupancy of its target genes in mouse liver during the diurnal cycle and show that pol III occupancy rises before the onset of the night, stays high during the night, when mice normally ingest food and when translation is increased, and decreases in daytime. By comparing diurnal pol III occupancy in wild-type mice, arrhythmic mice owing to inactivation of the Arntl gene, mice fed at regular intervals during both night and day, and mice lacking the Maf1 gene, we show that whereas higher pol III occupancy during the night reflects a MAF1-dependent response to feeding, the rise of pol III occupancy before the onset of the night reflects a circadian clock-dependent response. Thus, pol III transcription during the diurnal cycle is regulated both in response to nutrients and by the circadian clock, which allows anticipatory pol III transcription.
Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock.
Specimen part
View SamplesWe used RNA-seq to monitor mRNA levels of all genes in response to hypoxia of wild-type yeast, S. cerevisiae (strain yMH914 with wildtype HAP1). To gain insights into how gene expression changes over time, cells were subjected to 100% nitrogen gas and collected after 0,5,10,30,60,120,180, and 240 minutes. Total RNA was extracted and mRNAs were enriched by polyA selection. The cDNA was prepared into a sequencing library, multiplexed and single-end sequenced by an Illumina HiSeq 2500 sequencer. After mapping with Tophat2, the number of reads per feature was calculated using HTSeq. Overall design: RNA-seq analysis of eight time points of a yeast strain grown in hypoxia. There are three biological replicates of the time course.
Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response.
Subject
View SamplesSnail1 is a master factor of epithelial to mesenchymal transitioin (EMT), however, its role in embryonic vascular development is largely undefined. We used microarrays to compare the global programme of gene expression between cultured WT and Snai1 KO embyronic ECs.
A Snail1/Notch1 signalling axis controls embryonic vascular development.
Specimen part
View SamplesIn this experiment we catalogue transcriptional changes accompanying COPD in the quadriceps. We measure global gene transcription in the quadriceps using Affymetrix HuGene 1.1 ST arrays in an unselected cohort of 79 stable COPD patients in secondary care and 16 healthy age-and gender-matched controls.
COPD is accompanied by co-ordinated transcriptional perturbation in the quadriceps affecting the mitochondria and extracellular matrix.
Disease, Disease stage
View SamplesTranscriptional profiling was utilized to define the biological pathways of gingival epithelial cells modulated by mono- and complex co-culture with oral commensal S. gordonii and pathogenic P. gingivalis.
The degree of microbiome complexity influences the epithelial response to infection.
No sample metadata fields
View Samples