The reduced folate carrier (RFC1) is an integral membrane protein and facilitative anion exchanger that mediates delivery of 5-methyltetrahydrofolate into mammalian cells. Adequate maternal-fetal transport of folate is necessary for normal embryogenesis. Targeted inactivation of the murine RFC1 gene results in post-implantation embryo lethality, but daily folic acid supplementation of pregnant dams prolongs survival of homozygous embryos until mid-gestation. At E10.5 RFC1-/- embryos are developmentally delayed relative to wildtype littermates, have multiple malformations, including neural tube defects, and die due to failure of chorioallantoic fusion. The mesoderm is sparse and disorganized, and there is a marked absence of erythrocytes in yolk sac blood islands. Affymetrix microarray analysis and quantitative RT-PCR validation of the relative gene expression profiles in E9.5 RFC1-/- vs. RFC1+/+ embryos indicates a dramatic downregulation of multiple genes involved in erythropoiesis, and upregulation of several genes that form the cubilin-megalin multiligand endocytic receptor complex. Megalin protein expression disappears from the visceral yolk sac of RFC1-/- embryos, and cubilin protein is widely misexpressed. Inactivation of RFC1 impacts the expression of several ligands and interacting proteins in the cubilin-amnionless-megalin complex that are involved in the maternal-fetal transport of folate, vitamin B12, and other nutrients, lipids and morphogens required for normal embryogenesis.
Microarray analysis of E9.5 reduced folate carrier (RFC1; Slc19a1) knockout embryos reveals altered expression of genes in the cubilin-megalin multiligand endocytic receptor complex.
No sample metadata fields
View SamplesComprehensive discovery of endogenous Argonaute binding sites in C. elegans
Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans.
Specimen part
View SamplesThe ACBP knockout were created by targeted disruption of the gene in mice. The expression profiling was performed on liver tissue from ACBP-/- (KO) and +/+ (WT) mice at the age of 21 days, which in our study is the time immediately before weaning. The mice used for this experiment were taken directly away from their mother. Thus, having free access to chow and breast milk until sacrificed at 8-11am
Disruption of the acyl-CoA-binding protein gene delays hepatic adaptation to metabolic changes at weaning.
Specimen part
View SamplesBreast cancer is a curable disease if it is diagnosed at an early stage. However, only little options are left once the tumor is metastasized to distant organs, and more than 90% of breast cancer death is attributed to metastatic disease. The process of metastasis is highly complex and involves many steps for successful colonization of tumor cells at a target organ. According to the cancer stem cell (CSC) theory, which still remains a hypothesis, these metastatic cells must have stem cell-like capability for their self-renewal in addition to their invasive ability. Therefore, it has been predicted that a metastatic stem cell, which is distinct from a cancer stem cell, must exist in the primary tumor mass. To identify genes that are involved in metastasis of CSCs, we isolated CSC populations from a well-established model cell line of breast cancer, MDA-MB231, and that of highly metastatic variants, 231BoM-1833 and 231BrM-2a, using CD24, CD44 and EpCAM (ESA), which have been identified as surface markers for CSCs in breast cancers. Overall yield of CSCs from these cells ranged from 2% to 4%. We then performed global expression profile analysis for these CSCs using the Affymetrix Human Gene 1.0ST array.
Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells.
Cell line
View SamplesLIN28 is a conserved RNA binding protein implicated in pluripotency, reprogramming and oncogenesis. Previously shown to act primarily by blocking let-7 microRNA (miRNA) biogenesis, here we elucidate distinct roles of LIN28 regulation via its direct messenger RNA (mRNA) targets. Through cross-linking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq) in human embryonic stem cells and somatic cells expressing exogenous LIN28, we have defined discrete LIN28 binding sites in a quarter of human transcripts. These sites revealed that LIN28 binds to GGAGA sequences enriched within loop structures in mRNAs, reminiscent of its interaction with let-7 miRNA precursors. Among LIN28 mRNA targets, we found evidence for LIN28 autoregulation and also direct but differing effects on the protein abundance of splicing regulators in somatic and pluripotent stem cells. Splicing-sensitive microarrays demonstrated that exogenous LIN28 expression causes widespread downstream alternative splicing changes. These findings identify important regulatory functions of LIN28 via direct mRNA interactions. Overall design: CLIP-seq for LIN28-V5 in stable human Flp-In-293 cells, and LIN28 in hES cells; strand-specific mRNA-seq for uninfected, control KD, and LIN28 KD human H9 ES cells; and strand-specific smallRNA-seq for uninfected, control KD, and LIN28 KD human H9 ES cells.
LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance.
Cell line, Treatment, Subject
View SamplesHuman pluripotent stem cells (hPSCs) require precise control of post-transcriptional RNA networks to maintain proliferation and survival. Using a recently developed enhanced UV crosslinking and immunoprecipitation (eCLIP) approach, we identify RNA targets of the IMP/IGF2BP family of RNA-binding proteins in hPSCs. At the broad region- and binding site-level IMP1 and IMP2 show reproducible binding to a large and overlapping set of 3''UTR-enriched targets. RNA Bind-N-Seq applied to recombinant full-length IMP1 and IMP2 reveals CA-rich motifs that are enriched in eCLIP-defined binding sites. We observe that IMP1 loss in hPSCs recapitulates IMP1 phenotypes, including a reduction in cell adhesion and an increase in cell death. For cell adhesion, in hPSCs we find IMP1 maintains levels of integrin mRNA, specifically regulating RNA stability of ITGB5. Additionally, we show IMP1 can be linked to hPSC survival via direct target BCL2. Thus, transcriptome-wide binding profiles identify hPSC targets modulating well-characterized IMP1 roles. Overall design: eCLIP-seq was performed in biological replicate for IGF2BP1/IMP1 and IGF2BP2/IMP2, as well as one replicate each for IGF2BP3/IMP3, RBFOX2, and an IgG control. Each sample has a size-matched input control for analysis
Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival.
No sample metadata fields
View SamplesThis experiment aims to identify the biological pathways and diseases associated with the cytokine Interleukin 13 (IL-13) using gene expression measured in peripheral blood mononuclear cells (PBMCs). Overall design: The experiment comprised of samples obtained from 3 healthy donors. The expression profiles of in vitro IL-13 stimulation were generated using RNA-seq technology for 3 PBMC samples at 24 hours. The transcriptional profiles of PBMCs without IL-13 stimulation were also generated to be used as controls. An IL-13R-alpha antagonist (Redpath et al. Biochemical Journal, 2013) was introduced into IL-13 stimulated PBMCs and the gene expression levels after 24h were profiled to examine the neutralization of IL-13 signaling by the antagonist.
Combining multiple tools outperforms individual methods in gene set enrichment analyses.
No sample metadata fields
View SamplesWe expressed either only the E7 oncoprotein or the complete early genome region (CER) of the human papillomavirus type 8 in primary human adult skin keratinocytes.
Novel Insights Into Cellular Changes in HPV8-E7 Positive Keratinocytes: A Transcriptomic and Proteomic Analysis.
Specimen part
View SamplesDatabase of gene expression in different haematopoietic cell types at haemosphere.org Overall design: Comparison of gene expression in different haematopoietic cell types
Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans.
Specimen part, Subject
View SamplesG-CSF is a hemopoietic growth factor that has a role in steady state granulopoiesis, as well as in mature neutrophil activation and function. We developed a neutralizing monoclonal antibody to the murine G-CSF receptor (G-CSFR), which antagonizes binding of murine G-CSF and inhibits G-CSFR signalling. Anti-G-CSFR rapidly halts the progression of established disease in collagen antibody-induced arthritis (CAbIA). Neutrophil accumulation in joints is inhibited, without rendering animals neutropenic, suggesting an effect on homing to inflammatory sites. Neutrophils in the blood and arthritic joints of anti-G-CSFR treated mice show alterations in cell adhesion receptors, while anti-G-CSFR suppresses local production of proinflammatory cytokines and chemokines known to drive tissue damage. Our aim in this study was to use differential gene expression analysis of joint and blood neutrophils to more thoroughly understand the effect of G-CSFR blockade on the inflammatory response following anti-G-CSFR therapy in CAbIA.
Therapeutic Targeting of the G-CSF Receptor Reduces Neutrophil Trafficking and Joint Inflammation in Antibody-Mediated Inflammatory Arthritis.
Sex, Specimen part, Disease, Disease stage, Treatment
View Samples