Integration of multi-omics data remains a key challenge in fulfilling the potential of comprehensive systems biology.
OnPLS-Based Multi-Block Data Integration: A Multivariate Approach to Interrogating Biological Interactions in Asthma.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesMicroglia are the brain-resident myeloid cells of the parenchyma. We study the roles microglia play in response to virus infection.
Microglia are required for protection against lethal coronavirus encephalitis in mice.
Age, Specimen part, Time
View SamplesHematogenous macrophages infiltrate the brain after virus infection. We use a CSF1R inhibitior, PLX5622 to deplete microglia from the brain. However, macrophages also express the CSF1R and may be affected by PLX5622-treatment of mice.
Microglia are required for protection against lethal coronavirus encephalitis in mice.
Age, Specimen part, Time
View SamplesGlobal gene experssion study of the HAEC transcriptional response to artificial chlyomicron remnant-like particles (A-CRLPs) prepared with triglycerides extracted from four natural dietary oils: fish, DHASCO, corn and palm oils. We hypothesised that A-CRLPs could differentially regulate HAEC gene expression according to thier triglyceride content. These data provide an important starting point for investigations into the effects of A-CRLPs on endothelial cells, particulary genes involved in redox balance and inflammatory processes.
Endothelial HO-1 induction by model TG-rich lipoproteins is regulated through a NOX4-Nrf2 pathway.
Specimen part
View SamplesEpilepsy is a common cause of morbidity affecting approximately one third of patients with primary brain tumors. However, the molecular mechanism underlying the tumor induced epileptogenesis is poorly understood. The alteration in peritumoral microenvironments is believed to play a significant role in inducing epileptogenesis.
Transcriptomic profiling of human peritumoral neocortex tissues revealed genes possibly involved in tumor-induced epilepsy.
Sex, Specimen part, Disease, Disease stage
View SamplesRibosome profiling is a widespread tool for studying translational dynamics in human cells. Its central assumption is that ribosome footprint density on a transcript quantitatively reflects protein synthesis. Here, we test this assumption using pulsed-SILAC (pSILAC) high-accuracy targeted proteomics. We focus on multiple myeloma cells exposed to bortezomib, a first-line chemotherapy and proteasome inhibitor. In the absence of drug effects, we found that direct measurement of protein synthesis by pSILAC correlated well with indirect measurement of synthesis from ribosome footprint density. This correlation, however, broke down under bortezomib-induced stress. By developing a statistical model integrating longitudinal proteomic and mRNA-seq measurements, we found that proteomics could directly detect global alterations in translational rate caused by bortezomib; these changes are not detectable by ribosomal profiling alone. Further, by incorporating pSILAC data into a gene expression model, we predict cell-stress specific proteome remodeling events. These results demonstrate that pSILAC provides an important complement to ribosome profiling in measuring proteome dynamics. Overall design: Timecourse experiment with six points over 48hr after bortezomib exposure in MM.1S myeloma cells. mRNA-seq and ribosome profiling data at each time point.
Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics.
No sample metadata fields
View SamplesIn order to establish a list of candidate direct COUP-TFI gene targets in the inner ear, we analyzed the differential gene expression profiles of the wild-type and the COUP-TFI/ P0 inner ears.
Genome-wide analysis of binding sites and direct target genes of the orphan nuclear receptor NR2F1/COUP-TFI.
Specimen part
View SamplesPurpose: The purpose of this experiment is to expand the repertoire of C. elegans edited transcripts and identify the roles of ADR-1 as indirect regulator of editing and ADR-2 as the only active deaminase in vivo. Methods: Strand-specific RNA sequencing of wild-type and adr mutant worms, followed by a novel RNA variant calling and comparative analysis pipeline. Results: Despite lacking deaminase function, ADR-1 affects editing of over 60 adenosines within the 3’ UTRs of 16 different mRNAs. Furthermore, ADR-1 interacts directly with ADR-2 substrates, even in the absence of ADR-2; and mutations within its dsRNA binding domains abolished both binding and editing regulation. Conclusions: ADR-1 acts as a major regulator of editing by binding ADR-2 substrates in vivo and raises the possibility that other dsRNA binding proteins, including the inactive human ADARs, regulate RNA editing by deaminase-independent mechanisms. Overall design: Strand-specific RNA sequencing of wild-type and adr mutant worms, followed by a novel RNA variant calling and comparative analysis pipeline.
The dsRBP and inactive editor ADR-1 utilizes dsRNA binding to regulate A-to-I RNA editing across the C. elegans transcriptome.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Human Hematopoietic Signal peptide-containing Secreted 1 (hHSS1) modulates genes and pathways in glioma: implications for the regulation of tumorigenicity and angiogenesis.
Specimen part, Cell line
View SamplesA172 cell lines were stable transfected with C19ORF63 (Human hematopoietic peptide secreted-1 - HSS1). HSS1 is a truly novel protein defining a new class of secreted factors. A172 cell line overexpressing HSS1 greatly reduced their proliferation rate compared to mock-transfected cells.
Human Hematopoietic Signal peptide-containing Secreted 1 (hHSS1) modulates genes and pathways in glioma: implications for the regulation of tumorigenicity and angiogenesis.
Specimen part, Cell line
View Samples