Synovial fibroblasts of 6 RA patients were treated with IL1 or PDGF-D. The aim of this study was to outline mechanism of the disease RA by a treatment with one of these cytokines.
Novel application of multi-stimuli network inference to synovial fibroblasts of rheumatoid arthritis patients.
Treatment, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions.
Sex, Specimen part
View SamplesThe opportunistic fungal pathogen Candida albicans is a common cause of life-threatening nosocomial bloodstream infections. In the murine model of systemic candidiasis the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To get a better understanding of the organ-specific differences in host-pathogen interaction during systemic murine candidiasis, we performed a time-course gene expression profiling to investigate the differential responses of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We clearly demonstrate a delayed immune response on the transcriptional level in kidney accompanied by late induction of fungal stress response genes in this organ. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptional profile resembling that of phagocytosed cells, suggesting that the resident phagocytic system contributes significantly to fungal control in the liver. Although no visible filamentation occurred in the liver, C. albicans hypha-associated genes were upregulated, indicating an uncoupling of gene expression and morphology during infection of this organ. In vitro the induction of hypha-associated gene expression in yeast cells led to altered interaction with macrophages, suggesting that the observed transcriptional changes affect host-pathogen interaction in vivo. Consistently, the combination of host and pathogen transcriptional data in an inference network model implied that C. albicans cell wall remodeling and metabolism were connected to the immune responses in kidney and liver. Furthermore, the network suggested links between fungal iron acquisition and amino acid metabolism in the kidney and host organ homeostasis. Thus, this work provides novel insights into the organ-specific host-pathogen interactions during systemic C. albicans infection.
Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions.
Sex, Specimen part
View SamplesThe opportunistic fungal pathogen Candida albicans is a common cause of life-threatening nosocomial bloodstream infections. In the murine model of systemic candidiasis the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To get a better understanding of the organ-specific differences in host-pathogen interaction during systemic murine candidiasis, we performed a time-course gene expression profiling to investigate the differential responses of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We clearly demonstrate a delayed immune response on the transcriptional level in kidney accompanied by late induction of fungal stress response genes in this organ. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptional profile resembling that of phagocytosed cells, suggesting that the resident phagocytic system contributes significantly to fungal control in the liver. Although no visible filamentation occurred in the liver, C. albicans hypha-associated genes were upregulated, indicating an uncoupling of gene expression and morphology during infection of this organ. In vitro the induction of hypha-associated gene expression in yeast cells led to altered interaction with macrophages, suggesting that the observed transcriptional changes affect host-pathogen interaction in vivo. Consistently, the combination of host and pathogen transcriptional data in an inference network model implied that C. albicans cell wall remodeling and metabolism were connected to the immune responses in kidney and liver. Furthermore, the network suggested links between fungal iron acquisition and amino acid metabolism in the kidney and host organ homeostasis. Thus, this work provides novel insights into the organ-specific host-pathogen interactions during systemic C. albicans infection.
Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions.
Sex, Specimen part
View SamplesAnalysis of epithelial explants injected with the intracellular domain of Notch (ICD) to block the formation of multi-ciliate and proton secreting cells or with dominant negative human Mastermind (HMM) or a DNA binding mutant of Mastermind (DBM) to induce the formation of ectopic multi-ciliate and proton secreting cells. Results show which genes are up or down-regulated when DBM/HMM are compared to ICD.
Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation.
No sample metadata fields
View SamplesMany thousand long non-coding (lnc) RNAs are mapped in the human genome. Time consuming studies using reverse genetic approaches by post-transcriptional knock-down or genetic modification of the locus demonstrated diverse biological functions for a few of these transcripts. The Human Gene Trap Mutant Collection in haploid KBM7 cells is a ready-to-use tool for studying protein-coding gene function. As lncRNAs show remarkable differences in RNA biology compared to protein-coding genes, it is unclear if this gene trap collection is useful for functional analysis of lncRNAs. Here we use the uncharacterized LOC100288798 lncRNA as a model to answer this question. Using public RNA-seq data we show that LOC100288798 is ubiquitously expressed, but inefficiently spliced. The minor spliced LOC100288798 isoforms are exported to the cytoplasm, whereas the major unspliced isoform is nuclear localized. This shows that LOC100288798 RNA biology differs markedly from typical mRNAs. De novo assembly from RNA-seq data suggests that LOC100288798 extends 289kb beyond its annotated 3'' end and overlaps the downstream SLC38A4 gene. Three cell lines with independent gene trap insertions in LOC100288798 were available from the KBM7 gene trap collection. RT-qPCR and RNA-seq confirmed successful lncRNA truncation and its extended length. Expression analysis from RNA-seq data shows significant deregulation of 41 protein-coding genes upon LOC100288798 truncation. Our data shows that gene trap collections in human haploid cell lines are useful tools to study lncRNAs, and identifies the previously uncharacterized LOC100288798 as a potential gene regulator. Overall design: We cultured and processed 8 KBM7 cell lines in one batch. These cell lines were: two wild type KBM7 cells (WT2 and WT3), two monoclonal KBM7 cell lines with gene trap cassette insertions outside of the body of LOC100288798 (C1 and C2), two independently obtained KBM7 clones with gene trap cassette insertion 3kb downstream LOC100288798 transcriptional start site (TSS) (3kb1 and 3kb2), one independently obtained KBM7 clone with gene trap cassette insertion 100kb downstream LOC100288798 TSS replicated twice at the thawing step (100kb1 and 100kb2). We isolated total RNA from all th 8 cell lines, applied DNAseI treatment and ribosomal RNA depletion, and thhen prepared strand-specific RNA-seq libraries, which were pooled in equal molarities and sequenced using Illumina HiSeq 2000 (8 pooled samples were sequence on 2 lanes). We performed 50bp single-end RNA-seq. We used these 8 samples (4 untreated: WT2, WT3, C1, C2 and 4 treated:3kb1, 3kb2, 100kbk1, 100kb2) to analyze genome-wide gene deregulation associated with LOC100288798 lncRNA truncation
A human haploid gene trap collection to study lncRNAs with unusual RNA biology.
No sample metadata fields
View SamplesParadoxical cryptococcosis-associated immune reconstitution inflammatory syndrome
Transcriptomic Predictors of Paradoxical Cryptococcosis-Associated Immune Reconstitution Inflammatory Syndrome.
Specimen part
View SamplesWe utilized oligonucleotide microarrays to measure cellular mRNA decay rates in mock- or reovirus-infected murine L929 cells to determine if changes in host mRNA expression are a consequence of reovirus-induced alterations in cellular mRNA stability.
Reovirus infection induces stabilization and up-regulation of cellular transcripts that encode regulators of TGF-β signaling.
Cell line, Time
View SamplesA growing number of studies on gynecological cancers (GCs) have revealed potential gene markers associated either with the pathogenesis and progression of the disease on representing putative targets for therapy and treatment of cervical (CC), endometrial (EC) and vulvar cancer (VC). However, quite a little overlap is found between these data. In this study we combined data from the three GCs integrating gene expression profile analysis.
Profiling of Discrete Gynecological Cancers Reveals Novel Transcriptional Modules and Common Features Shared by Other Cancer Types and Embryonic Stem Cells.
Specimen part, Disease, Disease stage
View SamplesWe report the ability of the Drosha null/conditional-null mouse model to enable the identification of pri-miRNA transcripts. The conditional-null allele of Drosha phenocopies the null allele both in mESC and in mice, upon conversion to the null state with Cre. Overall design: Examination of the effects of Drosha deficiency in mouse embryonic stem cells.
microTSS: accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs.
No sample metadata fields
View Samples