Maternal Embryonic Leucine Zipper Kinase (MELK), a Ser/Thr protein kinase, is highly over expressed in stem and cancer cells. The oncogenic role of MELK is attributed to its capacity to disable critical cell cycle checkpoints and to enhance replication. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing, but this is often compromised by off target effects. Here we present the cellular validation of a novel, potent and selective small molecule MELK inhibitor, MELK-T1, which has enabled us to explore the biological function of MELK. Strikingly, the binding of MELK-T1 to endogenous MELK triggers a rapid and proteasome dependent degradation of the MELK protein. Treatment of MCF-7 breast adenocarcinoma cells with MELK-T1 leads to an accumulation of stalled replication forks and double strand breaks, followed by a replicative senescence phenotype. This phenotype correlates with a rapid and long-lasting ATM activation and phosphorylation of CHK2. Furthermore, MELK-T1 induces strong phosphorylation of p53 and prolonged up-regulation of p21.
MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells.
Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.
Specimen part, Treatment
View SamplesThe development of an effective therapy against tauopathies like Alzheimers disease (AD) and frontotemporal dementia (FTD) remains challenging, partly due to limited access to fresh brain tissue, the lack of translational in vitro disease models and the fact that underlying molecular pathways remain to be deciphered. Several genes play an important role in the pathogenesis of AD and FTD, one of them being the MAPT gene encoding the microtubule-associated protein tau. Over the past few years, it has been shown that induced pluripotent stem cells (iPSC) can be used to model various human disorders and can serve as translational in vitro tools. Therefore, we generated iPSC harboring the pathogenic FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) associated mutations IVS10+16 with and without P301S in MAPT using Zinc Finger Nuclease technology. Whole transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential and aberrant WNT signaling. Notably, all phenotypes were recapitulated using patient-derived neurons. Finally, an additional P301S mutation causes an increased calcium bursting frequency, reduced lysosomal acidity and tau oligomerization.
Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.
Treatment
View SamplesThe development of an effective therapy against tauopathies like Alzheimers disease (AD) and frontotemporal dementia (FTD) remains challenging, partly due to limited access to fresh brain tissue, the lack of translational in vitro disease models and the fact that underlying molecular pathways remain to be deciphered. Several genes play an important role in the pathogenesis of AD and FTD, one of them being the MAPT gene encoding the microtubule-associated protein tau. Over the past few years, it has been shown that induced pluripotent stem cells (iPSC) can be used to model various human disorders and can serve as translational in vitro tools. Therefore, we generated iPSC harboring the pathogenic FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) associated mutations IVS10+16 with and without P301S in MAPT using Zinc Finger Nuclease technology. Whole transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential and aberrant WNT signaling. Notably, all phenotypes were recapitulated using patient-derived neurons. Finally, an additional P301S mutation causes an increased calcium bursting frequency, reduced lysosomal acidity and tau oligomerization.
Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.
Specimen part, Treatment
View SamplesGlucocorticoid resistance (GCR) is defined as an unresponsiveness to the anti-inflammatory properties of glucocorticoids (GCs) and their receptor, the glucocorticoid receptor (GR). It is a serious problem in the management of inflammatory diseases and occurs frequently. The strong pro-inflammatory cytokine TNF induces an acute form of GCR, not only in mice, but also in several cell lines, e.g. in the hepatoma cell line BWTG3, as evidenced by impaired Dexamethasone (Dex)-induced GR-dependent gene expression. We report that TNF has a significant and broad impact on the transcriptional performance of GR, but no impact on nuclear translocation, dimerization or DNA binding capacity of GR. Proteome-wide proximity-mapping (BioID), however, revealed that the GR interactome is strongly modulated by TNF. One GR cofactor that interacts significantly less with the receptor under GCR conditions is p300. NF?B activation and p300 knockdown both reduce transcriptional output of GR, whereas p300 overexpression and NF?B inhibition revert TNF-induced GCR, which is in support of a cofactor reshuffle model. This hypothesis is supported by FRET studies. This mechanism of GCR opens new avenues for therapeutic interventions in GCR diseases Overall design: Examination of GR induced gene expression in 4 conditions (1 control: NI and 3 treated: DEX, TNF, TNFDEX) starting from 3 biological replicates
TNF-α inhibits glucocorticoid receptor-induced gene expression by reshaping the GR nuclear cofactor profile.
Specimen part, Cell line, Treatment, Subject
View SamplesTissue-resident memory T cells (Trm) are non-circulating memory T cells that localize to portals of pathogen entry such as the skin, gut and lung where they provide efficient early protection against reinfection. Trm are characterized by a molecular profile that actively prevents egress from peripheral sites including the constitutive expression of the lectin CD69 and down-regulation of the chemokine receptor (CCR)7 and sphingosine-1-phosphate receptor 1 (S1PR1). This program is partially mediated by down-regulation of the transcription factor KLF2; however, to date no transcriptional regulator specific to Trm has been identified. Here we show that the Blimp1 related transcription factor Hobit is specifically upregulated in Trm and together with Blimp1, mediates the development and maintenance of Trm in various tissues including skin, gut, liver and kidney. Importantly, we found that the Hobit/Blimp1 transcriptional module is also required for other tissue-resident lymphocytes including Natural Killer T (NKT) cells and liver tissue-resident NK cells (trNK). We show that these populations share a universal transcriptional program with Trm instructed by Hobit and Blimp1 that includes the repression of CCR7, S1PR1 and KLF2 thereby enforcing tissue retention. Our results identify Hobit and Blimp1 as major common regulators that drive the differentiation of distinct populations of tissue-resident lymphocytes. Overall design: RNA-seq data were generated for multiple tissues in mice to investigate global expression difference between resident and circulating cells.
Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes.
No sample metadata fields
View SamplesThe overall study (Quinn et al. Cell Reports, 2018) aimed to understand why CD8 virtual memory T (TVM) cells become markedly less proliferative in response to TCR-driven signals with increasing age, whereas CD8 true naive (TN) cells maintain their proliferative capacity. Age-associated decreases in primary CD8+ T cell responses occur, in part, due to direct effects on naïve CD8++ T cells to reduce intrinsic functionality, but the precise nature of this defect remains undefined. Ageing also causes accumulation of antigen-naïve but semi-differentiated “virtual memory” (TVM) cells but their contribution to age-related functional decline is unclear. Here, we show that TVM cells are poorly proliferative in aged mice and humans, despite being highly proliferative in young individuals, while conventional naïve T cells (TN cells) retain proliferative capacity in both aged mice and humans. Adoptive transfer experiments in mice illustrated that naïve CD8 T cells can acquire a proliferative defect imposed by the aged environment but age-related proliferative dysfunction could not be rescued by a young environment. Molecular analyses demonstrate that aged TVM cells exhibit a profile consistent with senescence, marking the first description of senescence in an antigenically naïve T cell population. Overall design: In the RNA-Seq analysis uploaded here, we have sorted TN cells (CD44lo), TVM cells (CD49dlo CD44hi) and CD8 conventional memory T (TMEM) (CD49dhi CD44hi) cells from naive young mice (3 months old) or aged mice (18 months old). To sort enough cells of each type, we pooled 4 mice, so each replicate represents a pooled sample of 4 mice. Each replicate was split in half, with half the sample frozen in TRIzol immediately for our directly ex vivo or "unstim" sample and the other half of the sample stimulated with plate-bound anti-CD3 (10ug/mL), anti-CD8a (10ug/mL) and antiCD11a (5 ug/mL) and soluble recombinant human IL-2 (10U/mL) for 5 hours, before being frozen in TRIzol as our stimulated or "stim" samples. We therefore collected 2 replicates for each cell subsets (designated "1" and "2") and the "unstim" and "stim" samples are matched. Altogether, we had 24 samples (young (Y) and aged (A); replicate 1 and replicate 2, with cells pooled from 4 mice in each replicate; TN, TVM and TMEM cells; unstim and stim match across each replicate). Due to lane capacity limits for sequencing, we processed these samples for RNA and sequencing in two batches (Batch 1- Y1_Tn_Unstim, Y1_Tvm_Unstim, Y1_Tmem_Unstim, Y1_Tn_Stim, Y1_Tvm_Stim, Y1_Tmem_Stim, A1_Tn_Stim, A1_Tvm_Stim, A1_Tmem_Stim, A2_Tn_Stim, A2_Tvm_Stim, A2_Tmem_Stim. Batch 2- Y2_Tn_Unstim, Y2_Tvm_Unstim, Y2_Tmem_Unstim, Y2_Tn_Stim, Y2_Tvm_Stim, Y2_Tmem_Stim, A1_Tn_Unstim, A1_Tvm_Unstim, A1_Tmem_Unstim, A2_Tn_Unstim, A2_Tvm_Unstim, A2_Tmem_Unstim). Of note, in Batch 2 we ran a duplicate of Y1_Tn_Unstim (Y1_Tn_Unstim_norm) to test for any batch effect, but none was observed. Extracted RNA was treated with recombinant DNAse I (Roche) according to the manufacturer's instructions, purified using the RNeasy MinElute Cleanup columns (Qiagen) and analysed for RNA quality using the RNA 6000 Nano kit (Agilent) on an Agilent 2100 Bioanalyzer. Samples were prepared with the Illumina TruSeq RNA v2 sample preparation protocol (cDNA synthesis, adapter ligation, PCR amplification) (Illumina) and run using 100 bp paired end sequencing on an Illumina Hi-Seq. Adapters were trimmed with Trim Galore and trimmed reads were aligned to mm10 genome with TopHat2 version 2.1.1 (Kim et al., 2013) keeping the strand information. Only concordantly aligned read pairs were retained, duplicate fragments were removed using MarkDuplicates from Picard tools and read pairs with mapping quality less than 5 were discarded. To generate a counts matrix, retained read pairs were assigned to genes using featureCounts function (Liao et al., 2014) from Bioconductor Rsubread package taking into account strand information.
Metabolic characteristics of CD8<sup>+</sup> T cell subsets in young and aged individuals are not predictive of functionality.
Specimen part, Subject
View SamplesComparison between in vitro transcription- and cDNA-mediated annealing, selection and ligation (DASL)-based assays on brain-specific reference RNA, and postmortem frozen and formalin fixed brain tissue from autistic and control cases. Investigation of data preprocessing techniques for DASL-assayed RNA samples from frozen brain tissue.
Preprocessing and Quality Control Strategies for Illumina DASL Assay-Based Brain Gene Expression Studies with Semi-Degraded Samples.
Specimen part, Disease
View SamplesProper cortical development relies on the balance of neuronal migration and proliferation. We investigated the gene expression differences of mouse knock-outs for Lissencephaly in humans.
Global developmental gene expression and pathway analysis of normal brain development and mouse models of human neuronal migration defects.
Specimen part
View SamplesWe report RNA-Seq experiments of whole eye tissues from A/J, BALB/c, and C57BL/6 background mice. Overall design: Examine ocular tissue from 3 different background mice that display varying rates of retinal degeneration.
Transcriptome analysis reveals rod/cone photoreceptor specific signatures across mammalian retinas.
Sex, Age, Specimen part, Cell line, Subject
View Samples