This experiment was set up in order to identify the (direct) transcriptional targets of the Ethylene Response Factor 115 (ERF115) transcription factor. Because ERF115 expression occurs in quiescent center (QC) cells and strong effects on the QC cells were observed in ERF115 overexpression plants, root tips were harvested for transcript profiling in order to focus on root meristem and QC specific transcriptional targets.
ERF115 controls root quiescent center cell division and stem cell replenishment.
Age, Specimen part
View SamplesOculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant disease caused by an alanine tract expansion mutation in Poly(A)-binding protein nuclear 1 (expPABPN1). To model OPMD in a myogenic and physiological context, we generated mouse myoblast cell clones stably expressing either human wild type (WT) or expPABPN1 at low levels. The transgene expression is induced upon myotube differentiation and results in formation of insoluble nuclear PABPN1 aggregates that are similar to the in vivo aggregates. Quantitative analysis of PABPN1 protein in myotube cultures revealed that expPABPN1 accumulation and aggregation is greater than that of the WT protein. In a comparative study we found that aggregation of expPABPN1 is more affected by inhibition of proteasome activity, as compared with the WT PABPN1 aggregation. Consistent with this, in myotubes cultures expressing expPABPN1 deregulation of the proteasome was identified as the most significantly deregulated pathway. Differences in the accumulation of soluble WT and expPABPN1 were consistent with differences in ubiquitination and protein turnover. This study indicates, for the first time, that in myotubes the ratio of soluble to insoluble expPABPN1 is significantly lower compared to that of the WT protein. We suggest that this difference can contribute to muscle weakness in OPMD.
Modeling oculopharyngeal muscular dystrophy in myotube cultures reveals reduced accumulation of soluble mutant PABPN1 protein.
Cell line
View SamplesThis work is part of an existing collaboration between the two laboratories, funded by the EU (EU-RTN-INTEGA). Both parties will share the cost of this microarray experiment. Background: We have demonstrated that ethylene-insensitive mutants and wild type(col-0) Arabidopsis plants treated with an ethylene perception inhibitor have increased levels of expression of genes, such as GASA1 and g-TIP, that are thought to be regulated by GA (Vriezen et al, unpublished results). However, this observation was based on an RNA gel blot analysis and therefore limited to few genes. Aim: To investigate whether plants with decreased ethylene perception are generally hypersensitive to GA or whether this effect is restricted to specific genes. We plan to undertake a complete transcriptome analysis of GA-treated wild type andetr1-1 plants. The aim is to identify genes that are induced directly as a result of the GA treatment, and we will therefore focus on the time window 0-3h. Tissues to be sampled: Plants will be grown in vitroon MS/2 containing 1% sucrose, pH 5.7, at 22 C,70% RH, under white light (54 PAR) and a photoperiod of 16h light/8h dark. Plants will be treated at 14 days and harvested entirely, i.e. roots and shoots are extracted together. Experimental set-up: Col-0 and the ethylene-insensitive mutant etr1-1 will be sprayed with 50 microM GA4 in water. GA4 is the major bio-active GA in Arabidopsis. Samples will be taken after 0, 30 min, 1h, and 3h. In order to correct for touch-induced genes a control, which is sprayed with water only and harvested at 1h, will be included for both genotypes. The total number of chips to be hybridized is 10. The time course with 4 data points is preferred to a single time point with 3 repeats, because it will allow us to follow the induction kinetics and identify early response genes. For each timepoint, RNA will be extracted from at least 40 individuals.
Reciprocal influence of ethylene and gibberellins on response-gene expression in Arabidopsis thaliana.
Specimen part
View SamplesWe have ablated TAF10 in the erythroid compartment only by crossing the TAF10lox mice with the EpoR-Cre mice and we have studied the development of the erythroid cells in vivo. TAF10 ablation led to embryonic death at E13.5 while at E12.5 there was a clear developmental defect which was reflected in the transcriptional profile of the fetal liver cells. Gata1-target genes were mostly affected and were responsible for the lethal phenotype. Overall design: mRNA from E12.5 fetal livers of TAF10lox/KO:EpoR-Cre+/- (TAF10KO) mice, TAF10HET and WT mice was profiled by NGS (Illumina).
TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis.
No sample metadata fields
View SamplesThe accumulation of irreparable cellular damage restricts healthy lifespan after acute stress or natural aging. Senescent cells are thought to impair tissue function and their genetic clearance can successfully delay features of aging. Identifying how senescent cells avoid apoptosis would allow for the prospective design of anti-senescence compounds to address whether homeostasis can be restored. Here, we identify FOXO4 as a pivot in the maintenance of senescent cell viability. We designed a FOXO4-based peptide which selectively competes for interaction of FOXO4 with p53. In senescent cells, this results in p53 nuclear exclusion and cell-intrinsic apoptosis. Importantly, under conditions where it was well tolerated, the FOXO4 peptide restored liver function after Doxorubicin-induced chemotoxicity. Moreover, in fast aging XpdTTD/TTD, as well as in naturally aged mice the FOXO4 peptide could counteract the loss of fitness, fur density and renal function. Thus, it is possible to therapeutically target senescent cells and thereby effectively counteract senescence-associated loss of tissue homeostasis. Overall design: mRNA expression levels are compared between IR-induced senescent and proliferating IMR90 cells in triplicate
Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging.
Specimen part, Cell line, Subject
View SamplesWe derived gene set signature for GSEA investigation study from primary cell culture derived from healthy patients. Cells were exposed or not to cytokine for 24H before RNA collection and microarray analysis
Selective inhibition of TGF-β1 produced by GARP-expressing Tregs overcomes resistance to PD-1/PD-L1 blockade in cancer.
Specimen part, Treatment
View SamplesSequencing libraries were generated from total RNA samples following the mRNAseq protocol for the generation of single end (16-36 hpf, 5 day larvae, adult head and adult tail) or paired end (24 hpf) libraries (Illumina). Single end reads of 36 nucleotides and paired end reads (2 x 76 nucleotides) were obtained with a GAIIx (Illumina). Gene expression at the different stages/tissu was assessed by cufflinks and HTseq. Overall design: RNAseq on 5 differents samples: 24hpf embryos, pool of 16 hour to 36 hour embryos, 5 days old larvea, adult head and adult tail
Genome-wide, whole mount in situ analysis of transcriptional regulators in zebrafish embryos.
No sample metadata fields
View SamplesmRNA profiles of thousands of human tumors are available, but methods to deduce oncogenic signaling networks from these data lag behind. It is especially challenging to identify main-regulatory routes, and to generalize conclusions obtained from experimental models. We designed the bioinformatic platform R2 in parallel with a wet-lab approach of neuroblastoma. Here we demonstrate how R2 facilitates an integrated analysis of our neuroblastoma data. Analysis of the MYCN pathway suggested important regulatory connections to the polyamine synthesis route, the Notch pathway and the BMP/TGF pathway. A network of genes emerged connecting major oncogenes in neuroblastoma. Genes in the network carried strong prognostic values and were essential for tumor cell survival.
Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes.
Specimen part
View SamplesAlmost a quarter of pediatric patients with Acute Lymphoblastic Leukemia (ALL) suffer from relapses. The biological mechanisms underlying therapy response and development of relapses have remained unclear. In an attempt to better understand this phenomenon, we have analyzed 41 matched diagnosis relapse pairs of ALL patients using genomewide expression arrays (82 arrays) on purified leukemic cells. In roughly half of the patients very few differences between diagnosis and relapse samples were found (stable group), suggesting that mostly extra-leukemic factors (e.g., drug distribution, drug metabolism, compliance) contributed to the relapse. Therefore, we focused our further analysis on 20 samples with clear differences in gene expression (skewed group), reasoning that these would allow us to better study the biological mechanisms underlying relapsed ALL. After finding the differences between diagnosis and relapse pairs in this group, we identified four major gene clusters corresponding to several pathways associated with changes in cell cycle, DNA replication, recombination and repair, as well as B cell developmental genes. We also identified cancer genes commonly associated with colon carcinomas and ubiquitination to be upregulated in relapsed ALL. Thus, about half of relapses are due to selection or emergence of a clone with deregulated expression of a genes involved in pathways that regulate B cell signaling, development, cell cycle, cellular division and replication.
Genome-wide expression analysis of paired diagnosis-relapse samples in ALL indicates involvement of pathways related to DNA replication, cell cycle and DNA repair, independent of immune phenotype.
Sex, Specimen part, Disease
View SamplesBackground and Purpose—Analyzing genes involved in development and rupture of intracranial aneurysms can enhance knowledge about the pathogenesis of aneurysms, and identify new treatment strategies. We compared gene expression between ruptured and unruptured aneurysms and control intracranial arteries. Methods—We determined expression levels with RNA sequencing. Applying a multivariate negative binomial model, we identified genes that were differentially expressed between 44 aneurysms and 16 control arteries, and between 22 ruptured and 21 unruptured aneurysms. The differential expression of 8 relevant and highly significant genes was validated using digital polymerase chain reaction. Pathway analysis was used to identify enriched pathways. We also analyzed genes with an extreme pattern of differential expression: only expressed in 1 condition without any expression in the other. Results—We found 229 differentially expressed genes in aneurysms versus controls and 1489 in ruptured versus unruptured aneurysms. The differential expression of all 8 genes selected for digital polymerase chain reaction validation was confirmed. Extracellular matrix pathways were enriched in aneurysms versus controls, whereas pathways involved in immune response and the lysosome pathway were enriched in ruptured versus unruptured aneurysms. Immunoglobulin genes were expressed in aneurysms, but showed no expression in controls. Conclusions—For rupture of intracranial aneurysms, we identified the lysosome pathway as a new pathway and found further evidence for the role of the immune response. Our results also point toward a role for immunoglobulins in the pathogenesis of aneurysms. Immune-modifying drugs are, therefore, interesting candidate treatment strategies in the prevention of aneurysm development and rupture. Overall design: RNA sequencing of 44 intracranial aneurysm samples (including 21 unruptured, 22 ruptured and 1 undetermined) and 16 control samples of the intracranial cortical artery
RNA Sequencing Analysis of Intracranial Aneurysm Walls Reveals Involvement of Lysosomes and Immunoglobulins in Rupture.
Sex, Age, Subject
View Samples