Gene expression profiles of subsets of CD4+ T cells according to their expression of FoxP3 and CD45RA were compared.
Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers.
Sex, Specimen part, Disease, Disease stage, Treatment, Race, Subject
View SamplesThis study used whole blood transcriptional signatures from patients with tuberculosis compared to those with similar pulmonary diseases, sarcoidosis, pneumonia and primary lung cancer. TB and sarcoidosis had similar signatures that were distinct from pneumonia and lung cancer.
Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers.
Sex, Specimen part, Disease, Disease stage, Race
View SamplesOur laboratory's interest is in understanding the molecular principles that underlie the regional organization of the mammalian metanephric kidney. Our goal is to generate a detailed spatial map of the cellular expression of selected regulatory genes during mammalian kidney development. The goal of this study is to identify a population of genes that are enriched in the renal vesicle (RV) and its derivatives using Wnt4 mutants.
Transcriptional profiling of Wnt4 mutant mouse kidneys identifies genes expressed during nephron formation.
Sex
View SamplesT84 cells were treated with DMSO, 30nM trametinib (MEKi), 1µM JQ1 (BRD4i) or the combination of trametinib and JQ1 (combo) for 24h. Overall design: 3 replicates per condition were analyzed by RNA-seq.
Suppression of interferon gene expression overcomes resistance to MEK inhibition in KRAS-mutant colorectal cancer.
Cell line, Treatment, Subject
View SamplesHCT116 cells were treated with with increasing concentrations of trametinib over 2 months. Drug-resistant clones emerged and were cultured in the presence of 30 nmol/L trametinib. These cells exhibited a greater than 10-fold increase in the GI50 for trametinib compared to the parental cell line. RNA-seq of the resistant clone HCT116_R4 versus the parental cells identified differentially expressed genes potentially involved in resistance. Overall design: For the parental and resistant clone, 3 replicates each were analysed by RNA-seq.
Suppression of interferon gene expression overcomes resistance to MEK inhibition in KRAS-mutant colorectal cancer.
Treatment, Subject
View SamplesSadanandam et al. (2013) recently published a study based on the use of microarray data to classify colorectal cancer (CRC) samples. The classification claimed to have strong clinical implications, as reflected in the paper title: A colorectal cancer classification system that associates cellular phenotype and responses to therapy. They defined five subtypes: (i) inflammatory; (ii) goblet-like; (iii) enterocyte; (iv) transit-amplifying; and (v) stem-like. Based on drug sensitivity data from 21 patients, they also reported that the so-called stem-like subtype show differential sensitivity to FOLFIRI. This is the key result in their publication, since it implies a direct relation between the subtype and the choice of CRC therapy (i.e. FOLFIRI response). However, our analyses using the same drug sensitivity data and results from additional patients showed that the CRC classification reported by Sadanandam et al. is not predictive of FOLFIRI response.
Colorectal cancer classification based on gene expression is not associated with FOLFIRI response.
Specimen part
View SamplesWe report the RNAseq data obtained from 50.000-100.000 CD31-/CD45- pneumocytes isolated by FACS from mice harboring a normal dose or one extra copy of the Sirt1 gene, and a tamoxifen-inducible oncogenic KI alelle of KRasG12V after 4 weeks of tamoxifen treatment. Pneumocytes with the activated form of the inducible KRasG12V oncogene sere selected making use of the reporter gene LacZ (located next to the oncogene in the same polycistronic mRNA), by loading CD31-/CD45- pneumocytes with the LacZ-activated fuorogenic molecule FDG prior to FACS sorting. Overall design: Four replicates of each genetic group (Sirt1-WT and Sirt1-Tg) pneumocytes were used for this study. Sirt1-WT were used as reference controls.
Sirt1 protects from K-Ras-driven lung carcinogenesis.
Subject
View SamplesWe report the RNAseq data obtained from 50.000-100.000 CD31-/CD45- pneumocytes isolated by FACS from mice harboring a normal dose or one extra copy of the Sirt1 gene, and a tamoxifen-inducible oncogenic KI alelle of KRasG12V after 4 weeks of tamoxifen treatment plus 2 weeks without tamoxifen. Pneumocytes with the activated form of the inducible KRasG12V oncogene sere selected making use of the fluorescent reporter gene Katushka (located at an independent locus), by detecting Katushka fluorescence. Overall design: Four replicates of each genetic group (Sirt1-WT and Sirt1-Tg) pneumocytes were used for this study. Sirt1-WT were used as reference controls.
Sirt1 protects from K-Ras-driven lung carcinogenesis.
Sex, Subject
View SamplesLong non-coding RNAs (lncRNAs) comprise a diverse class of transcripts that structurally resemble mRNAs but do not encode proteins. Recent genome-wide studies in human and mouse have annotated lncRNAs expressed in cell lines and adult tissues, but a systematic analysis of lncRNAs expressed during vertebrate embryogenesis has been elusive. To identify lncRNAs with potential functions in vertebrate embryogenesis, we performed a time series of RNA-Seq experiments at eight stages during early zebrafish development. We reconstructed 56,535 high-confidence transcripts in 28,912 loci, recovering the vast majority of expressed RefSeq transcripts, while identifying thousands of novel isoforms and expressed loci. We defined a stringent set of 1,133 non-coding multi-exonic transcripts expressed during embryogenesis. These include long intergenic ncRNAs (lincRNAs), intronic overlapping lncRNAs, exonic antisense overlapping lncRNAs, and precursors for small RNAs (sRNAs). Zebrafish lncRNAs share many of the characteristics of their mammalian counterparts: relatively short length, low exon number, low expression, and conservation levels comparable to introns. Subsets of lncRNAs carry chromatin signatures characteristic of genes with developmental functions. The temporal expression profile of lncRNAs revealed two novel properties: lncRNAs are expressed in narrower time windows than protein-coding genes and are specifically enriched in early-stage embryos. In addition, several lncRNAs show tissue-specific expression and distinct subcellular localization patterns. Integrative computational analyses associated individual lncRNAs with specific pathways and functions, ranging from cell cycle regulation to morphogenesis. Our study provides the first comprehensive identification of lncRNAs in a vertebrate embryo and forms the foundation for future genetic, genomic and evolutionary studies. Overall design: RNA-Seq for 8 zebrafish developmental stages, 2 lanes for each stage (3 for shield).
Ribosome profiling reveals resemblance between long non-coding RNAs and 5' leaders of coding RNAs.
No sample metadata fields
View Samples