Background: Malignant peripheral nerve sheath tumors (MPNST) are soft-tissue sarcomas that can arise either sporadically or in association with neurofibromatosis type 1 (NF1). These aggressive malignancies confer poor survival, with no effective therapy available.
Comprehensive establishment and characterization of orthoxenograft mouse models of malignant peripheral nerve sheath tumors for personalized medicine.
Disease
View SamplesCommon bean (Phaseolus vulgaris) and soybean (Glycine max) both belong to the Phaseoleae tribe and share significant coding sequence homology. To evaluate the utility of the soybean GeneChip for transcript profiling of common bean, we hybridized cRNAs purified from nodule, leaf, and root of common bean and soybean in triplicate to the soybean GeneChip. Initial data analysis showed a decreased sensitivity and specificity in common bean cross-species hybridization (CSH) GeneChip data compared to that of soybean. We employed a method that masked putative probes targeting inter-species variable (ISV) regions between common bean and soybean. A masking signal intensity threshold was selected that optimized both sensitivity and specificity. After masking for ISV regions, the number of differentially-expressed genes identified in common bean was increased by about 2.8-fold reflecting increased sensitivity. Quantitative RT-PCR analysis of a total of 20 randomly selected genes and purine-ureides pathway genes demonstrated an increased specificity after masking for ISV regions. We also evaluated masked probe frequency per probe set to gain insight into the sequence divergence pattern between common bean and soybean. The results from this study suggested that transcript profiling in common bean can be done using the soybean GeneChip. However, a significant decrease in sensitivity and specificity can be expected. Problems associated with CSH GeneChip data can be mitigated by masking probes targeting ISV regions. In addition to transcript profiling CSH of the GeneChip in combination with masking probes in the ISV regions can be used for comparative ecological and/or evolutionary genomics studies.
Transcript profiling of common bean (Phaseolus vulgaris L.) using the GeneChip Soybean Genome Array: optimizing analysis by masking biased probes.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PHABULOSA Mediates an Auxin Signaling Loop to Regulate Vascular Patterning in Arabidopsis.
Specimen part
View SamplesThe class III HD-ZIPtranscription factors regulate vascular patterning in Arabidopsis thaliana roots. In this expression study we compare the expression profile in root tips upon miR165 induction, after 6h, 10h and 24h. The results are presented in PHABULOSA mediates an auxin signaling loop to regulate vascular patterning in Arabidopsis by Christina Joy Mller, Ana Elisa Valds, Guodong Wang, Prashanth Ramachandran, Lisa Beste, Daniel Uddenberg, and Annelie Carlsbecker, accepted for publication in Plant Physiology Nov. 2015.
PHABULOSA Mediates an Auxin Signaling Loop to Regulate Vascular Patterning in Arabidopsis.
Specimen part
View SamplesThe class III HD-ZIP transcription factors regulate vascular patterning in Arabidopsis thaliana roots. In this expression study we compare the expression profile of the cna-2 phb-13 phv-11 and cna-2 phb-13 phv-11 rev-6 mutants to their wild type. The results are presented in PHABULOSA mediates an auxin signaling loop to regulate vascular patterning in Arabidopsis by Christina Joy Mller, Ana Elisa Valds, Guodong Wang, Prashanth Ramachandran, Lisa Beste, Daniel Uddenberg, and Annelie Carlsbecker, accepted for publication in Plant Physiology Nov. 2015.
PHABULOSA Mediates an Auxin Signaling Loop to Regulate Vascular Patterning in Arabidopsis.
No sample metadata fields
View SamplesThe class III HD-ZIP transcription factors regulate vascular patterning in Arabidopsis thaliana roots. In this expression study we compare the expression profile of the athb8 cna phb phv quadruple mutant to its wild type. The results are presented in PHABULOSA mediates an auxin signaling loop to regulate vascular patterning in Arabidopsis by Christina Joy Mller, Ana Elisa Valds, Guodong Wang, Prashanth Ramachandran, Lisa Beste, Daniel Uddenberg, and Annelie Carlsbecker, accepted for publication in Plant Physiology Nov. 2015.
PHABULOSA Mediates an Auxin Signaling Loop to Regulate Vascular Patterning in Arabidopsis.
No sample metadata fields
View SamplesPluripotent cell identity comprises a spectrum of cell states including naive and primed states, which are typified by mouse embryonic stem cells (ESCs) and epiblast-derived stem cells (EpiSCs), respectively. Here we define a pluripotent cell fate (PCF) gene signature based on RNA-seq analysis associated with naive and primed pluripotency acquisition, and identify Zfp281 as a key transcriptional regulator for primed pluripotency and also as a barrier to achieve the naive pluripotency of both mouse and human ESCs. Overall design: RNA sequencing analysis was performed in WT and Zfp281 null mouse embryonic stem cells under different pluripotent culture conditions. RNA-seq Experiments were carry out in two biological replciates. Genome binding/occupancy profiling of Zfp281 was performed in mouse embryonic stem cells by ChIP sequencing.
Zfp281 Coordinates Opposing Functions of Tet1 and Tet2 in Pluripotent States.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer.
Cell line
View SamplesContext: Polycystic ovarian syndrome (PCOS), the most common endocrine disorder of reproductive- aged women, is associated with systemic low-grade inflammation. Objective: We propose that increased or altered intrafollicular inflammatory reactions also occur in periovulatory follicles of PCOS patients. Design: Gene profiling and quantitative PCR (qPCR) analyses in granulosa-lutein cells (GCs) collected from PCOS and non-PCOS women undergoing in vitro fertilization were compared with serum and follicular fluid (FF) levels of cytokines and chemokines. Setting: This was a university-based study. Patients: Twenty-one PCOS and 45 control patients were recruited: demographic, hormone, body mass index, and pregnancy outcomes were abstracted from patient data files. Interventions:GCcytokine/chemokinemRNAswere identified and analyzed by gene-chip microarrays/ qPCR before and after culture withhumanchorionic gonadotropin, DHT, IL-6, or IL-8; serum/FF cytokine levels were also analyzed. Main Outcome Measures: Relative serum/FF cytokine levels and GC cytokine expression before and after culture were compared and related to body mass index. Results: The following results were found: 1) PCOS GCs express elevated transcripts encoding cytokines, chemokines, and immune cell markers, 2) based on gene profiling and qPCR analyses, obese PCOS patients define a distinct PCOS disease subtype with the most dramatic increases in proinflammatory and immune-related factors, and 3) human chorionic gonadotropin and DHT increased cytokine production in cultured GCs, whereas cytokines augmented cytokine and vascular genes, indicating that hyperandrogenism/elevated LH and obesity in PCOS women augment intrafollicular cytokine production. Conclusions: Intrafollicular androgens and cytokines likely comprise a local regulatory loop that impacts GC expression of cytokines and chemokines and the presence of immune cells; this loop is further enhanced in the obese PCOS subtype.
Enhanced Inflammatory Transcriptome in the Granulosa Cells of Women With Polycystic Ovarian Syndrome.
Specimen part
View SamplesCancer is characterised by DNA hypermethylation and gene silencing of CpG island-associated promoters, including tumour suppressor genes The methyl-CpG-binding domain (MBD) family of proteins bind to methylated DNA and can aid in the meditation of gene silencing by interaction with histone deacetylases and histone methyltransferases. However the mechanisms responsible for eliciting CpG island hypermethylation in cancer, and the potential role that MBD may proteins play in modulation of the methylome remain unclear. Our previous work demonstrated that MBD2 preferentially binds to the hypermethylated GSTP1 promoter CpG island in prostate cancer cells. Here, we use functional genetic approaches to investigate if MBD2 plays an active role in promoting DNA methylation. First, we show that loss of MBD2 results in inhibition of both maintenance and spread of de novo methylation of a transfected construct containing the GSTP1 promoter CpG island in prostate cancer cells and Mbd2-/- mouse fibroblasts. De novo methylation was rescued by transient expression of Mbd2 in Mbd2-/- cells. Second, we show that MBD2 depletion triggers significant hypomethylation genome-wide in prostate cancer cells with concomitant loss of MBD2 binding at promoter and enhancer regulatory regions. Finally, CpG islands and shores that become hypomethylated after MBD2 depletion in LNCaP cancer cells show significant hypermethylation in clinical prostate cancer, highlighting a potential active role of MBD2 in promoting cancer specific hypermethylation. Importantly, co-immunoprecipiation of MBD2 reveals that MBD2 associates with DNA methyltransferase (DNMT) enzymes 1 and 3A. Together our results demonstrate that MBD2 plays a critical role in rewriting the cancer methylome at specific regulatory regions.
Methyl-CpG-binding protein MBD2 plays a key role in maintenance and spread of DNA methylation at CpG islands and shores in cancer.
Cell line
View Samples