HD11 cells were stimulated with 1 ug/ml endotoxin from ST-798 for 1, 2, 4 and 8 hours
Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin.
Cell line, Time
View SamplesThe objective of the present investigation was to utilize the GeneChip Porcine Genome Array from Affymetrix possessing 20, 201 unique probe sets to identify differentially expressed genes during rapid trophoblastic elongation and attachment to the uterine surface in the pig. Identification and characterization of conceptus gene expression patterns during rapid trophoblastic elongation and attachment in the pig will provide a better understanding of the events required for successful implantation and embryonic survival.
Identification of differential gene expression during porcine conceptus rapid trophoblastic elongation and attachment to uterine luminal epithelium.
No sample metadata fields
View SamplesMouse bone marrow-derived macrophages (BMDM) grown in macrophage colony-stimulating factor (CSF-1) have been used widely in studies of macrophage biology and the response to toll-like receptor agonists. We investigated whether similar cells could be derived from the domestic pig. Cultivation of pig bone marrow cells for 5-7 days in presence of rhCSF-1 generated a pure population of BMDM that expressed the usual macrophage markers (CD14, CD16, CD163, CD172a), are potent phagocytic cells and produced tumor necrosis factor (TNF) in response to lipopolysaccharide (LPS). Bone marrow cells could be stored frozen and thawed, providing a renewable resource.
Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide.
Sex, Specimen part, Time
View SamplesBACKGROUND:
Endometrial gene expression profiling in pregnant Meishan and Yorkshire pigs on day 12 of gestation.
Specimen part
View SamplesTranscriptional profiling coupled with blood metabolite analyses were used to identify porcine genes and pathways that respond to a fasting treatment or to a D298N missense mutation in the melanocortin-4 receptor (MC4R) gene. Gilts (12 homozygous for D298 and 12 homozygous for N298) were either fed ad libitum or fasted for 3 days. Fasting decreased body weight and backfat and increased serum concentrations of non-esterified fatty acid and urea. In response to fasting, 7,029 genes in fat and 1,831 genes in liver were differentially expressed (DE, q value less than 0.05). MC4R genotype did not affect gene expression, body weight, backfat depth, and any measured serum metabolite concentration. Pathway analyses of fasting-induced DE genes indicated that both liver and fat down-regulated energetically costly processes such as lipid and steroid synthesis and up-regulated efficient energy utilization pathways. Fasting increased expression of genes in involved in glucose sparing pathways in liver and extracellular matrix pathways in adipose tissue. Within the DE genes, transcription factors (TF) that regulate many DE genes were identified, confirming the involvement of TF that are known to regulate fasting response and implicating additional TF that are not known to be involved in energy homeostatic responses. Interestingly, estrogen receptor 1 transcriptionally controls fasting induced genes in fat that are involved in cell matrix morphogenesis. Our findings indicate a transcriptional response to fasting in two key metabolic tissues of pigs that was corroborated by changes in blood metabolites; and involvement of novel putative transcriptional regulators in the immediate adaptive response to fasting.
Microarray gene expression profiles of fasting induced changes in liver and adipose tissues of pigs expressing the melanocortin-4 receptor D298N variant.
No sample metadata fields
View SamplesResidual feed intake (RFI) is a measure of feed efficiency, where low RFI denotes high feed efficiency. Caloric restriction (CR) is associated with feed efficiency in livestock species and to human health benefits such as longevity and cancer prevention. We have developed pig lines that differ in RFI and are interested to identify the genes and pathways that underlie feed efficiency. Prepubertal Yorkshire gilts with low RFI (n=10) or high RFI (n=10) were fed ad libitum or at 80% of maintenance for eight days. We measured serum metabolites and generated transcriptional profiles of liver and subcutaneous adipose tissue. 6,114 genes in fat and 305 genes in liver were differentially expressed (DE) in response to CR and 311 in fat and 147 in liver were DE due to RFI differences. Pathway analyses of CR-induced DE genes indicated a switch to a conservation mode of energy by down-regulating lipogenesis and steroidogenesis in both liver and fat. Interestingly, CR in pigs altered expression of genes in immune and cell cycle/apoptotic pathways in fat, which may explain part of the CR-driven lifespan enhancement. In-silico analysis of transcription factors revealed ESR1 as a putative regulator of the adaptive response to CR and several targets of ESR1 in our DE fat genes were annotated as cell cycle/apoptosis genes. Lipid metabolic pathway was overrepresented by down-regulated genes due to both CR and low RFI. We propose a common energy conservation mechanism, which may be controlled by PPARA, PPARG, and/or CREB in both CR and feed efficient pigs.
Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency.
Age, Specimen part
View SamplesA first generation Affymetrix GeneChip Porcine genome array was used to profile the gene expression in porcine mesenteric lymph nodes over a time course of infection with S. Typhimurium, including the acute (8 hours post inoculation (hpi), 24 hpi, 48 hpi) and chronic (21 days post-inoculation (dpi)) stages of infection. Our objectives were to 1) identify and examine the stereotypical gene expression response within host MLN to S. Typhimurium infection, 2) characterize global host responses by revealing the specific features of the hosts innate immunity pathways, and 3) explore if and how S. Typhimurium may escape the host immune response and develop into a carrier state.
Global transcriptional response of porcine mesenteric lymph nodes to Salmonella enterica serovar Typhimurium.
Age
View SamplesTo understand the host transcriptional response to S. enterica serovar Choleraesuis (S. Choleraesuis), the first generation Affymetrix porcine GeneChip was used to identify differentially expressed genes in the mesenteric lymph nodes responding to infection at acute (8 hours (h), 24h, 48h post-inoculation (pi)) and chronic stages (21 days (d) pi)
Analysis of porcine transcriptional response to Salmonella enterica serovar Choleraesuis suggests novel targets of NFkappaB are activated in the mesenteric lymph node.
Age
View SamplesSalmonella species infect many vertebrate species, and pigs colonized with Salmonella enterica serovar Typhimurium (ST) are usually asymptomatic, making detection of these Salmonella-carrier pigs difficult. The variable fecal shedding of this gram-negative bacteria in such pigs is an important cause of foodborne illness and zoonotic disease. To investigate gene pathways and biomarkers associated with the variance in Salmonella shedding following experimental inoculation, we have initiated the first analysis of the whole blood transcriptional response induced by Salmonella. A population of pigs (n=40) was inoculated with ST and the peripheral blood and feces were collected between 2 and 20 days post-inoculation. Two groups of pigs with either low shedding (LS) or persistent shedding (PS) phenotypes were identified. The global transcriptional changes in response to ST inoculation were identified by Affymetrix Genechip?analysis of peripheral blood RNA at day 0 and day 2 post-inoculation.
Distinct peripheral blood RNA responses to Salmonella in pigs differing in Salmonella shedding levels: intersection of IFNG, TLR and miRNA pathways.
Specimen part
View SamplesBackground and aims: There are considerable evidences demonstrating that angiogenesis and chronic inflammation are mutually dependent. However, although cirrhosis progression is characterized with a chronic hepatic inflammatory process, this connection is not sufficiently explored as a therapeutic strategy. Therefore, this study was aimed to assess the potential benefits of targeting angiogenesis in cirrhotic livers to modulate inflammation and fibrosis. For this purpose, we evaluate the therapeutic utility of angiogenesis inhibitors. Methods: The in vivo effects of angiogenesis inhibitors were monitored in liver of cirrhotic rats by measuring angiogenesis, inflammatory infiltrate, fibrosis, a-smooth muscle actin (a-SMA) accumulation, differential gene expression (by microarrays), and portal pressure. Results: Cirrhosis progression was associated with a significant enhancement of vascular density and expression of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1, angiopoietin-2 and placental growth factor (PlGF) in cirrhotic livers. The newly formed hepatic vasculature expressed vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Interestingly, the expression of these adhesion molecules correlated well with local inflammatory infiltrate. Livers of cirrhotic rats treated with angiogenesis inhibitors presented a significant decrease in hepatic vascular density, inflammatory infiltrate, a-SMA abundance, collagen expression and portal pressure. Conclusion: Angiogenesis inhibitors may offer a potential novel therapy for cirrhosis due to its multiple mechanisms of action against angiogenesis, inflammation and fibrosis in cirrhotic livers.
Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats.
No sample metadata fields
View Samples