we have investigated molecular and functional properties in early B-lineage cells from Pax-5 deficient animals crossed to a B-lineage restricted reporter mouse. Gene expression analysis of ex vivo isolated progenitor cells revealed that Pax-5 deficiency has a minor impact on Bcell specification.By comparison of gene expression patterns in ex vivo isolated Pax-5 and Ebf-1 deficient progenitors, it was possible to identify a set of B-cell restricted genes dependent of Ebf-1 but not Pax-5, supporting the idea that B-cell specification and commitment is controlled by distinct regulatory networks.
Single-cell analysis of early B-lymphocyte development suggests independent regulation of lineage specification and commitment in vivo.
Specimen part
View SamplesIn order to investigate molecular events involved in the regulation of lymphoid lineage commitment, we crossed lamda5 reporter transgenic mice to mice where the GFP gene is inserted into the Rag1 locus. This allowed us to sub-fractionate common lymphoid progenitors (CLPs) and pre-pro-B cells into lamda5-Rag1low, lamda5-Rag1high and lamda5+Rag1high cells. Clonal in vitro differentiation analysis demonstrated that Rag1low cells gave rise to B/T and NK cells. Rag1high cells displayed reduced NK-cell potential with preserved capacity to generate B- and T-lineage cells while the lamda5+ cells were B-lineage restricted. Ebf1 and Pax5 expression was largely confined to the Rag1high populations. These cells also expressed a higher level of the surface protein LY6D providing an additional tool for the analysis of early lymphoid development. These data suggest that the classical CLP compartment composes a mixture of cells with more or less restricted lineage potentials opening new possibilities to investigate early hematopoiesis.
Single-cell analysis of the common lymphoid progenitor compartment reveals functional and molecular heterogeneity.
Specimen part
View SamplesWe performed a single-cell transcriptome analysis of double-negative developing thymocytes from the DN2, DN3 and DN4 populations Overall design: Double-negative developing thymocytes from the DN2, DN3 and DN4 populations were sorted from six WT mice and used for single cell RNA Seq (10x genomics platform)
The transcription factor Duxbl mediates elimination of pre-T cells that fail β-selection.
Sex, Specimen part, Cell line, Subject
View SamplesWe performed a transcriptome comparison of double-negative developing thymocytes from the DN3-4 population, from mice overexpressing the transcription factor Duxbl and wild type mice Overall design: Double-negative developing thymocytes from both WT and Duxbl[ind]xpTa[Cre] mice were gated for CD4-, CD8-, CD3-, B220-, CD25int, CD44low and CD117low expression, which define the DN3-4 stage of thymocyte development. The experiment was performed in four replicates, giving a total of 8 samples.
The transcription factor Duxbl mediates elimination of pre-T cells that fail β-selection.
Sex, Cell line, Subject
View SamplesThe mutation in the budding yeast gene PCNA, pol30-8, as well as deletion of DOT1 (dot1), encoding the only histone H3 K79 methyltransferase in budding yeast, have been implicated in telomeric silencing. To further analyze these mutants, we used microarrays to study whether either pol30-8, dot1 or the double mutant leads to changes in gene expression levels when compared to isogenic wild-type strains.
A common telomeric gene silencing assay is affected by nucleotide metabolism.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Atrial identity is determined by a COUP-TFII regulatory network.
Age, Specimen part
View SamplesAtria and ventricles exhibit distinct molecular profiles that produce structural and functional differences between the two cardiac compartments. However, factors that determine these differences remain largely undefined. Cardiomyocyte-specific COUP- TFII ablation produces ventricularized atria that exhibit ventricle-like action potentials, increased cardiomyocyte size, and development of extensive T-tubules.
Atrial identity is determined by a COUP-TFII regulatory network.
Age, Specimen part
View SamplesCOUP-TFII, a member of the nuclear receptor superfamily plays a critical role in angiogenesis and organogenesis during embryonic development. Our results indicate that COUP-TFII expression is profoundly upregulated in prostate cancer patients and might serves as biomarker for recurrence prediction. Thus we conduct transcriptome comparison of control and COUP-TFII depleted PC3 cells to gain genomic insights on the biological processes that COUP-TFII is involved in prostate cancer cells. Ingenuity Pathway Analysis (IPA) shows that the most prominent altered pathways in the COUP-TFII depleted cells are related to cell growth; cell cycle progression and DNA damage response. Indeed many growth related genes including E2F1, p21, CDC25A, Cyclin A and Cyclin B are changed in COUP-TFII knockdown cells, suggesting that COUP-TFII might be an important regulator for prostate cancer cell growth. Further functional assays from cells and mice genetic studies confirm the hypothesis that COUP-TFII serve as the major regulator to control prostrate cancer growth. Together, results provide insight into the role of COUP-TFII in prostate tumorigenesis.
COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease.
Specimen part, Treatment, Time
View SamplesEarly EPCs (eEPCs) appear at less than 1 week in culture dishes, whereas late EPCs (LEPCs) appear late at 2-4 weeks. Distinct angiogenic properties between these two EPC subpopulations have been disclosed by the angiogenesis assay: late EPCs, but not eEPCs, form vascular networks de novo and are able to incorporate into vascular networks. On the contrary, eEPCs, but not late ones, indirectly augment tubulogenesis even when physically separated by a Transwell membrane, implying the involvement of a cytokine-based paracrine mechanism.
Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease.
Specimen part, Time
View Samples