SETD5, a gene linked to intellectual disability (ID) and autism spectrum disorder (ASD), is a member of the SET-domain family and encodes a putative histone methyltransferase (HMT). To date, the mechanism by which SETD5 haploinsufficiency causes ASD/ID remains an unanswered question. Setd5 is the highly conserved mouse homolog, and although the Setd5 null mouse is embryonic lethal, the heterozygote is viable. Morphological tracing and multi electrode array was used on cultured cortical neurons. MRI was conducted of adult mouse brains and immunohistochemistry of juvenile mouse brains. RNA-Seq was used to investigate gene expression in the developing cortex. Behavioral assays were conducted on adult mice. Setd5+/- cortical neurons displayed significantly reduced synaptic density and neuritic outgrowth in vitro, with corresponding decreases in network activity and synchrony by electrophysiology. A specific subpopulation of fetal Setd5+/- cortical neurons showed altered gene expression of neurodevelopment-related genes. Setd5+/- animals manifested several autism-like behaviors, including hyperactivity, cognitive deficit, and altered social interactions. Anatomical differences were observed in Setd5+/- adult brains, accompanied by a deficit of deep-layer cortical neurons in the developing brain. Our data converge on a picture of abnormal neurodevelopment driven by Setd5 haploinsufficiency, consistent with a highly penetrant risk factor. Overall design: Single cell RNA-Seq of CD24+ CD45- neuronal cells isolated from E18.5 WT or SetD5 +/- mouse fetuses.
Setd5 haploinsufficiency alters neuronal network connectivity and leads to autistic-like behaviors in mice.
Specimen part, Cell line, Subject
View SamplesWe sequenced mRNA extracted from heads of a D. melanogaster population that was sedated with a stream of ethanol saturated vapor, 30 minutes before RNA extraction; and from an age-matched untreated control group. Differential gene expression between the two groups was calculated and reported. Overall design: Examination of mRNA levels in heads of D. melanogaster adult females after ethanol exposure was performed using next generation sequencing (NGS) technology.
Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway.
Cell line, Treatment, Subject
View SamplesIn most organisms biological processes are partitioned, or phased to specific times over the day through interactions between external cycles of temperature (thermocycles) and light (photocycles), and the endogenous circadian clock. This orchestration of biological activities is achieved in part through an underlying transcriptional network. To understand how thermocycles, photocycles and the circadian clock interact to control time of day specific transcript abundance in Arabidopsis thaliana, we conducted four diurnal and three circadian two-day time courses using Affymetrix GeneChips (ATH1). All time courses were carried out with seven-day-old seedlings grown on agar plates under thermocycles (HC, hot/cold) and/or photocycles (LD, light/dark), or continuous conditions (LL, continuous light; DD, continuous dark, HH, continuous hot). Whole seedlings (50-100), including roots, stems and leaves were collected every four hours and frozen in liquid nitrogen. The four time courses interrogating the interaction between thermocycles, photocycles and the circadian clock were carried out as two four-day time courses. Four-day time courses were divided into two days under diurnal conditions, and two days under circadian conditions of continuous light and temperature. Thermocycles of 12 hours at 22C (hot) and 12 hours at 12C (cold) were used in this study. The two time courses interrogating photoperiod were conducted under short days (8 hrs light and 16 hrs dark) or long days (16 hrs light and 8 hrs dark) under constant temperature. In addition, the photoperiod time courses were in the Landsberg erecta (ler) accession, in contrast to the other time courses that are in the Columbia (col) background. The final time course interrogated circadian rhythmicity in seedlings grown completely in the dark (etiolated). Dark grown seedlings were synchronized with thermocycles, and plants were sampled under the circadian conditions of continuous dark and temperature.
Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules.
Age, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells.
Cell line
View SamplesER17p is a synthetic peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ER) and initially synthesized to mimic its calmodulin binding site. ER17p was subsequently found to elicit estrogenic responses in E2-deprived ER-positive breast cancer cells, increasing proliferation and E2-dependent gene transcription. Surprisingly, in E2-supplemented media, ER17p induced apoptosis and modified the actin network, influencing thereby cell motility. Here, we report that ER17p induces a massive early (3h) transcriptional activity in breast cancer cell lines SKBR3). Remarkably, about 75% of the significantly modified transcripts were also modified by E2, confirming the pro-estrogenic profile of ER17p. The different ER spectra of the used cell lines allowed us to extract a specific ER17p signature related to ER and its variant ER36. With respect to ER, the peptide activates nuclear (cell cycle, cell proliferation, nucleic acid and protein synthesis) and extranuclear signaling pathways. In contrast, through ER36 it exerts inhibitory events on inflammation and cell cycle and inhibition of EGFR signaling. This is the first work reporting ER36 specific transcriptional effects. The fact that a number ER17p-induced transcripts is different from those activated by E2 revealed that the apoptosis and actin modifying effects of ER17p are independent from the ER-related actions of the peptide.
Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells.
Cell line
View SamplesER17p is a synthetic peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ER) and initially synthesized to mimic its calmodulin binding site. ER17p was subsequently found to elicit estrogenic responses in E2-deprived ER-positive breast cancer cells, increasing proliferation and E2-dependent gene transcription. Surprisingly, in E2-supplemented media, ER17p induced apoptosis and modified the actin network, influencing thereby cell motility. Here, we report that ER17p induces a massive early (3h) transcriptional activity in breast cancer cell line MDA-MB-231.
Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells.
Cell line
View SamplesER17p is a synthetic peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ER) and initially synthesized to mimic its calmodulin binding site. ER17p was subsequently found to elicit estrogenic responses in E2-deprived ER-positive breast cancer cells, increasing proliferation and E2-dependent gene transcription. Surprisingly, in E2-supplemented media, ER17p induced apoptosis and modified the actin network, influencing thereby cell motility. Here, we report that ER17p induces a massive early (3h) transcriptional activity in breast cancer cell line T47D.
Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity.
Specimen part
View SamplesTranscriptional control is dependent on a vast network of epigenetic modifications. One epigenetic mark of particular interest is tri-methylation of lysine 27 on histone H3 (H3K27me3), which is catalyzed and maintained by the Polycomb Repressor Complex (PRC2). Although this histone mark is studied widely, the precise relationship between its local pattern of enrichment and regulation of gene expression is currently unclear. We have used ChIP-seq to generate genome wide maps of H3K27me3 enrichment, and have identified three enrichment profiles with distinct regulatory consequences. First, a broad domain of H3K27me3 enrichment across the body of genes corresponds to the canonical view of H3K27me3 as inhibitory to transcription. Second, a peak of enrichment around the transcription start site is commonly associated with bivalent genes, where H3K4me3 also marks the TSS. Finally and most surprisingly, we identified an enrichment profile with a peak in the promoter of genes that is associated with active transcription. Genes with each of these three profiles were found in different proportions in each of the cell types studied. The data analysis techniques developed here will be useful for the identification of common enrichment profiles for other histone modifications that have important consequences for transcriptional regulation.
ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).
Specimen part, Cell line
View Samples