The biology underlying nodal metastasis is poorly understood. Transcriptome profiling has helped to characterize both primary tumors seeding nodal metastasis and the metastasis themselves. The interpretation of these data, however, is not without ambiguities. Here we profiled the transcriptomes of 17 papillary thyroid cancer (PTC) nodal metastases, associated primary tumors and primary tumors from N0 patients. We also included patient-matched normal thyroid and lymph node samples as controls to address some limits of previous studies. We found that the transcriptomes of patient-matched primary tumors and metastases were more similar than of unrelated metastases/primary pairs, a result also reported in other organ systems, and that part of this similarity reflected patient background. We found that the comparison of patient-matched primary tumors and metastases was heavily confounded by the presence of lymphoid tissues in the metastasis samples. An original data adjustment procedure was developed to circumvent this problem. It revealed a differential expression of stroma-related gene expression signatures also regulated in other organ systems. The comparison of N0 vs. N+ primary tumors uncovered a signal irreproducible across independent PTC datasets. This signal was also detectable when comparing the normal thyroid tissues adjacent to N0 and N+ tumors, suggesting a cohort specific bias also likely to be present in previous studies with similar statistical power. Classification of N0 vs. N+ yielded an accuracy of 63%, but additional statistical controls not presented in previous studies, revealed that this is likely to occur by chance alone. To address this issue, we used large datasets from The Cancer Genome Atlas and showed that N0 vs. N+ classification rates could not be reached randomly for most cancers. Yet, it was significant, but of limited accuracy (<70%) for thyroid, breast and head and neck cancers.
Revisiting the transcriptional analysis of primary tumours and associated nodal metastases with enhanced biological and statistical controls: application to thyroid cancer.
Sex
View SamplesWe compared the heart of 6-weeks-old mice (young) with 18-months-old mice (old)
MicroRNA-34a regulates cardiac ageing and function.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
Specimen part, Disease
View SamplesCorticosteroids are the current standard of care to improve short-term mortality in severe alcoholic hepatitis (AH), although nearly 40% of the patients do not respond and accurate pre-treatment predictors are lacking. We developed 123-gene prognostic score based on molecular and clinical variables before initiation of corticosteroids. Furthermore, The gene signature was implemented in an FDA-approved platform (NanoString), and verified for technical validity and prognostic capability. Here we demonstrated that a Nanostring-based gene expressoin risk classification is useful to predict mortality in patients with severe alcoholic hepatitis who were treated by corticosteroid
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
Specimen part, Disease
View SamplesCorticosteroids are the current standard of care to improve short-term mortality in severe alcoholic hepatitis (AH), although nearly 40% of the patients do not respond and accurate pre-treatment predictors are lacking. We developed 123-gene prognostic score based on molecular and clinical variables before initiation of corticosteroids. Furthermore, The gene signature was implemented in an FDA-approved platform (NanoString), and verified for technical validity and prognostic capability. Here we demonstrated that a Nanostring-based gene expressoin risk classificatoin is useful to predict mortality in patients with severe alcoholic hepatitis who were treated by corticosteroid
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
No sample metadata fields
View SamplesCorticosteroids are the current standard of care to improve short_term mortality in severe alcoholic hepatitis (AH), although nearly 40% of the patients do not respond and accurate pre_treatment predictors are lacking. We developed 123_gene prognostic score based on molecular and clinical variables before initiation of corticosteroids. Furthermore, The gene signature was implemented in an FDA_approved platform (NanoString), and verified for technical validity and prognostic capability. Here we demonstrated that a Nanostring_based gene expressoin risk classificatoin is useful to predict mortality in patients with severe alcoholic hepatitis who were treated by corticosteroid
Combination of Gene Expression Signature and Model for End-Stage Liver Disease Score Predicts Survival of Patients With Severe Alcoholic Hepatitis.
No sample metadata fields
View Samples