The roles of histone demethylase RBP2 in gene expression were assessed using gene expression profiling experiments with wild type and RBP2-/- primary MEFs. Several cytokine genes including SDF1 and Kit ligand were upregulated upon inactivation of RBP2.
The retinoblastoma binding protein RBP2 is an H3K4 demethylase.
No sample metadata fields
View SamplesTo investigate the role of FoxO transcription factors as mediators of hematopoietic stem cell resistance to oxidative stress.
FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress.
No sample metadata fields
View SamplesActivated phosphoinositide 3-kinase (PI3K)-AKT signaling appears to be an obligate event in the development of cancer. The highly related members of the mammalian FoxO transcription factor family, FoxO1, FoxO3, and FoxO4, represent one of several effector arms of PI3K-AKT signaling, prompting genetic analysis of the role of FoxOs in the neoplastic phenotypes linked to PI3K-AKT activation. While germline or somatic deletion of up to five FoxO alleles produced remarkably modest neoplastic phenotypes, broad somatic deletion of all FoxOs engendered a progressive cancer-prone condition characterized by thymic lymphomas and hemangiomas, demonstrating that the mammalian FoxOs are indeed bona fide tumor suppressors. Transcriptome and promoter analyses of differentially affected endothelium identified direct FoxO targets and revealed that FoxO regulation of these targets in vivo is highly context-specific, even in the same cell type. Functional studies validated Sprouty2 and PBX1, among others, as FoxO-regulated mediators of endothelial cell morphogenesis and vascular homeostasis.
FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis.
Specimen part
View SamplesSomatic mutations in calreticulin (CALR) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN). However, the mechanism by which mutant CALR is oncogenic is unknown. Here, we demonstrate that a megakaryocytic-specific MPN phenotype is induced when mutant CALR is over-expressed in mice and that the thrombopoietin receptor, MPL is required for mutant CALR driven transformation. Whole transcriptome analysis reveals enrichment of STAT signatures in mutant CALR transformed cells and JAK2 inhibitor treatment abrogates STAT activation. Employing extensive mutagenesis-based structure-function analysis we demonstrate that the positively charged amino acids within the mutant CALR C-terminus are required for cellular transformation through facilitating physical interaction between mutant CALR and MPL. Together, our findings elucidate a novel mechanism of cancer pathogenesis. Overall design: Transcriptomes derived from BA/F3-MPL cells transformed with human wild-type CALR, human mutant CALR 52bp del, or Empty vector, at time zero (t0) and 24 hours (t24) after IL3-withdrawal culture were generated by deep sequencing, two replicas, by HiSeq2000.
Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells.
Cell line, Treatment, Time
View SamplesRecent methylome studies have located N6-methyladenosine (m6A) RNA modification on thousands of mammalian transcripts. However, its functional mechanism remains unclear. In this study, we examined the role of m6A methylation in mouse embryonic stem cells.
N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells.
Cell line, Treatment, Time
View SamplesA total number of 1,511 probe sets in the bone marrow showed at least two-fold changes with FDR < 0.05, of which 256 probe sets had over four-fold changes. A group of 63 genes in the bone marrow of NDLD mice had more than a 4-fold change with FDR < 0.0001. From 503 genes encoding proteins with ITIM motif that binds to Ptpn6, 109 were up-regulated and 83 were down-regulated.
A differential gene expression study: Ptpn6 (SHP-1)-insufficiency leads to neutrophilic dermatosis-like disease (NDLD) in mice.
Disease, Disease stage
View SamplesPreviously, we constructed a coculture model to analyze the effect of macrophages on intestinal epithelial cells, and found that TNF-a secreted from human macrophage-like THP-1 cells induced cell damage to intestinal epithelial Caco-2 cells (Exp.Cell.Res. 2006, 312(19):3909-19). In this study, we present activation of NF-kB in Caco-2 cells within 15 min after coculturing. To reveal how TNF-a secreted from THP-1 cells affects Caco-2 cells in an early stage of coculture, we exhaustively analyzed the changes of gene expression in Caco-2 cells cocultured with THP-1 cells over the time periods of 0, 1, 3, 6, 24, and 48 h by using a DNA microarray. Differentially expressed genes extracted with maSigPro demonstrated that IEX-1 was the lowest p-value gene, that is, the most significantly changed gene among the up-regulated genes. The genes expressed in a similar pattern to IEX-1 involved immunity, apoptosis, and protein kinase cascade. These findings suggest that the stimuli of TNF-a from THP-1 cells activates NF-kB, leading induction of various gene expression. This pattern of gene expression indicates that not only early defense response but also cell death occurs at the same time, causing inflammatory condition.
Transient up-regulation of immunity- and apoptosis-related genes in Caco-2 cells cocultured with THP-1 cells evaluated by DNA microarray analysis.
Cell line, Time
View SamplesTNF is a proinflammatory cytokine with established roles in host defense and immune system organogenesis. Here we report a novel physiological function of TNF that extends its effect beyond the host into the developing offspring. A partial/complete maternal TNF-deficit, specifically in hematopoietic cells, resulted in reduced milk levels of chemokines IP-10, MCP-1/-3/-5, and MIP-1ß, which in turn, augmented offspring postnatal hippocampal proliferation, leading to improved adult spatial memory. These effects were reproduced by the postpartum administration of a clinically used anti-TNF agent. Chemokines, fed to suckling pups of TNF-deficient mothers, restored both postnatal proliferation and adult spatial memory to normal levels. This work identifies a TNF-dependent “lactrocrine” pathway that programs offspring hippocampal development and memory. The level of ambient TNF is known to be downregulated by physical activity/exercise and adaptive stress; thus, we propose that the maternal TNF-milk chemokine pathway evolved to promote offspring adaptation to post-weaning environmental challenges/competition. Overall design: Examined transcriptomes of TNF wild type offspring of TNF wild type or heterozygouse mothers
Principles Governing DNA Methylation during Neuronal Lineage and Subtype Specification.
No sample metadata fields
View SamplesMicroRNAs (miRNAs) are important regulators and potential therapeutic targets of metabolic disease. In this study we show by in vivo administration of locked nucleic acid (LNA) inhibitors that suppression of endogenous miR-29 lowers plasma cholesterol levels by ~40%, commensurate with the effect of statins, and reduces fatty acid content in the liver by ~20%. Whole transcriptome sequencing of the liver reveals 883 genes dysregulated (612 down, 271 up) by inhibition of miR-29. The set of 612 down-regulated genes are most significantly over-represented in lipid synthesis pathways. Among the up-regulated genes are the anti-lipogenic deacetylase sirtuin 1 (Sirt1) and the anti-lipogenic transcription factor aryl hydrocarbon receptor (Ahr), the latter of which we demonstrate is a direct target of miR-29. In vitro radiolabeled acetate incorporation assays confirm that pharmacologic inhibition of miR-29 significantly reduces de novo cholesterol and fatty acid synthesis. Our findings indicate that miR-29 controls hepatic lipogenic programs, likely in part through regulation of Ahr and Sirt1, and therefore may represent a candidate therapeutic target for metabolic disorders such as dyslipidemia. Overall design: Hepatic mRNA profiles of C57BL/6J female mice treated with LNA against miR-29a, miR-29b and miR-29c versus saline.
Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver.
No sample metadata fields
View Samples