The androgen receptor (AR) is the principal target for treatment of non-organ confined prostate cancer (PCa). Systems and bioinformatics approaches suggest that considerable variation exists in the mechanisms by which AR regulates expression of effector genes and point towards a role for secondary transcription factors (TFs) therein. We identified a novel indirect mechanism of androgen action in which effects of androgens on PCa cells are mediated by Serum Response Factor (SRF). To identify and characterize genes and cellular processes that are androgen-regulated in an SRF-dependent manner in PCa, Affymetrix HG-U133 Plus 2.0 GeneChip Array analysis was performed starting from RNA obtained from LNCaP cells in which androgen stimulation was combined with siRNA-mediated SRF silencing. To this end, LNCaP cells were seeded in 60 mm dishes at a density of 550,000 cells per dish in antibiotic-free medium. The next day, cells were transfected with siGenome SmartPool siRNA targeting SRF (Dharmacon, Lafayette, CO) or a custom-made control SmartPool targeting luciferase (LUC condition) using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) following the manufacturers instructions. Forty-two hours after transfection, cells were treated with 5nM R1881 or ethanol vehicle. 3 biological triplicates were included per treatment group. Forty-eight hours later, cells were harvested in Trizol reagent (Invitrogen). RNA was isolated, purified on RNeasy columns (Qiagen, Germantown, MD) and checked for integrity by Agilent testing (Affymetrix, Santa Clara, CA). cDNA was generated and hybridized to Human Genome U133 Plus 2.0 arrays (Affymetrix) according to the manufacturers instructions at the Mayo Clinic Advanced Genomics Technology Microarray Shared Resource core facility.
Identification of a clinically relevant androgen-dependent gene signature in prostate cancer.
Cell line
View SamplesA major contributor to cancer mortality is recurrence and subsequent metastatic transformation following therapeutic intervention. In order to develop new treatment modalities or improve the efficacy of current ones it is important to understand the molecular mechanisms that promote therapy-resistance to cancer cells. One pathway that has been demonstrated to therapy resistance is autophagy, a self-digestive process that can eliminate unnecessary or damaged organelles to protect cancer cells from necrosis. Effective targeting of this pathway could lead to the development of new therapies. In our studies, we found that the VEGF-C/NRP-2 axis is involved in the activation of autophagy, which is essential for the survival of cancer cells following chemotherapy treatment. Furthermore, we identified two VEGF-C/NRP-2-regulated genes, LAMP-2 and WDFY-1 that have previously been suggested to participate in autophagy and vesicular trafficking. The upregulation of WDFY-1 upon depleted level of VEGF-C contributed to cytotoxic drug-mediated cell death. Altogether, these data suggest a link between VEGF-C/neuropilin-2 axis and cancer cell survival despite the presence of chemotherapy-induced stress.
Autophagy control by the VEGF-C/NRP-2 axis in cancer and its implication for treatment resistance.
Cell line
View SamplesPlasmacytoid dendritic cells (pDCs) are key regulators of anti-viral immunity. They rapidly secrete IFN-alpha and cross-present viral antigens thereby launching adaptive immunity. Here we show that activated human pDCs inhibit replication of cancer cells, and kill them in a contact dependent fashion. Expression of CD2 distinguishes two pDC subsets with distinct phenotype and function. Both subsets secrete IFN-alpha and express Granzyme B and TRAIL. CD2high pDCs uniquely express lysozyme and can be found in tonsils and in tumors. Both subsets launch recall T cell response. However, CD2high pDCs secrete higher levels of IL12 p40, express higher levels of co-stimulatory molecule CD80 and are more efficient in triggering proliferation of nave allogeneic T cells. Thus, human blood pDCs are composed of subsets with specific phenotype and functions.
CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Brain transcriptional and epigenetic associations with autism.
Age, Specimen part, Disease, Disease stage, Subject
View SamplesThe LEF/TCF family of transcription factors are downstream effectors of the WNT signaling pathway, which drives colon tumorigenesis. LEF/TCFs have a DNA sequence-specific HMG box that binds Wnt Response Elements (WREs). The E tail isoforms of TCFs are alternatively spliced to include a second DNA binding domain called the C-clamp. We show that induction of a dominant negative C-clamp version of TCF1 (dnTCF1E) induces a p21-dependent stall in the growth of DLD1 colon cancer cells. Induction of a C-clamp mutant did not induce p21 or stall cell growth. Microarray analysis revealed that induction of p21 by dnTCF1EWT correlated with a decrease in expression of p21 suppressors that act at multiple levels from transcription (SP5, YAP1, RUNX1), to RNA stability (MSI2), and protein stability (CUL4A). We show that the C-clamp is a sequence specific DNA binding domain that can make contacts with 5-RCCG-3 elements upstream or downstream of WREs. The C-clamp-RCCG interaction was critical for TCF1E mediated transcriptional control of p21-connected target gene promoters. Our results indicate that a WNT/p21 circuit is driven by C-clamp target gene selection.
A WNT/p21 circuit directed by the C-clamp, a sequence-specific DNA binding domain in TCFs.
Specimen part
View SamplesAutism is a common neurodevelopmental syndrome. Numerous rare genetic etiologies are reported; most cases are idiopathic. To uncover important gene dysregulation in autism we analyzed carefully selected idiopathic autistic and control cerebellar and BA19 (occipital) brain tissues using high resolution whole genome gene expression and DNA methylation microarrays. No changes in DNA methylation were identified in autistic brain but gene expression abnormalities in two areas of metabolism were apparent: down-regulation of genes of mitochondrial oxidative phosphorylation and of protein translation. We also found associations between specific behavioral domains of autism and specific brain gene expression modules related to myelin/myelination, inflammation/immune response and purinergic signaling. This work highlights two largely unrecognized molecular pathophysiological themes in autism and suggests differing molecular bases for autism behavioral endophenotypes.
Brain transcriptional and epigenetic associations with autism.
Age
View SamplesExposure to ultraviolet (UV) irradiation is the major cause of nonmelanoma skin cancer, the most common form of cancer in the United States. UV irradiation has a variety of effects on the skin associated with carcinogenesis, including DNA damage and effects on signal transduction. The alterations in signaling caused by UV regulate inflammation, cell proliferation, and apoptosis. UV also activates the orphan receptor tyrosine kinase and proto-oncogene Erbb2 (HER2/neu). In this study, we demonstrate that the UV-induced activation of Erbb2 regulates the response of the skin to UV. Inhibition or knockdown of Erbb2 before UV irradiation suppressed cell proliferation, cell survival, and inflammation after UV. In addition, Erbb2 was necessary for the UV-induced expression of numerous proinflammatory genes that are regulated by the transcription factors nuclear factor-kappaB and Comp1, including interleukin-1beta, prostaglandin-endoperoxidase synthase 2 (Cyclooxygenase-2), and multiple chemokines. These results reveal the influence of Erbb2 on the UV response and suggest a role for Erbb2 in UV-induced pathologies such as skin cancer.
Erbb2 regulates inflammation and proliferation in the skin after ultraviolet irradiation.
No sample metadata fields
View SamplesExpression data from antigen-experienced Nfat1+/+ and Nfat1-/- CD4+ T cells following 21 days of Plasmodium yoelii 17XNL infection.
The Transcription Factor NFAT1 Participates in the Induction of CD4<sup>+</sup> T Cell Functional Exhaustion during Plasmodium yoelii Infection.
Sex, Specimen part
View SamplesA prevalent hypothesis for the cell-to-cell coordination of the phenomena of early development is that a defined mixture of different mRNA species at specific abundances in each cell determines fate and behavior. With this dataset we explore this hypothesis by quantifying the abundance of every mRNA species in every individual cell of the early C. elegans embryo, for which the exact life history and fate is precisely documented. Overall design: Embryos of the 1-, 2-, 4-, 8- and 16-cell stage were dissected into complete sets of single cells, and each cell from each set was sequenced individually using SMARTer technology. 5-9 replicates were generated for each stage. Most cell identities were unknown upon sequencing, but were deduced from by their transcriptomes post hoc.
A Transcriptional Lineage of the Early C. elegans Embryo.
Specimen part, Subject
View SamplesWe hypothesized that preterm spontaneous labor involves aberrant changes in mRNA expression in the placenta. To test this hypothesis, we interrogated the mRNA levels of >50,000 genes and transcript variants using gene expression microarray (Human Genome U133 Plus 2.0 Array, Affymetrix) on 5 placentas collected from preterm spontaneous delivery (<34 weeks of gestation) and another 5 placentas collected from term spontaneous delivery (38-39 weeks).
Systematic identification of spontaneous preterm birth-associated RNA transcripts in maternal plasma.
Specimen part
View Samples