The intention of these gene expression analysis was to study host responses to an infection with Agrobacterium tumefaciens at different stages of crown gall development. Therefore the transcriptome of infected inflorescence stalk tissue and mature crown galls of Arabidopsis thaliana (WS-2) was determined of three different time points. These were compared with the transcriptome of mock-infected inflorescence stalk tissue (reference) of the same age. The following time points were analyzed: (i) three hours post inoculation, before the T-DNA is integrated into the host genome (ii) six days after inoculation when the T-DNA is present in the nucleus and the oncogenes are expressed in the host cell, and (iii) 35 days after inoculation when a mature tumors has developed. For the three-hour- (3hpi) and six-day- time point (6dpi) plants were infected with the virulent strain C58, harboring a T-DNA, or with strain GV3101, containing a disarmed Ti-plasmid. This allows discrimination between signals which derive from the bacterial pathogen and the T-DNA encoded oncogenes.
An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach.
Specimen part
View SamplesThis study focuses on responses of the host plant to infection with Agrobacterium tumefaciens. Genome wide changes in gene expression were integrated with the alterations in metabolite levels three hours after inoculation of agrobacteria. Plants were infected with the virulent strain C58, harboring a T-DNA, or with strain GV3101, containing a disarmed Ti-plasmid. This allows discrimination between signals which derive from the bacterial pathogen and the T-DNA encoded genes.
An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach.
Specimen part
View SamplesThis study focuses on responses of the host plant to infection and transformation with Agrobacterium tumefaciens. Genome wide changes in gene expression were integrated with the alterations in metabolite levels six days after inoculation of agrobacteria. Plants were infected with the virulent strain C58, harboring a T-DNA, or with strain GV3101, containing a disarmed Ti-plasmid. This allows discrimination between signals which derive from the bacterial pathogen and the T-DNA encoded genes.
An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach.
Specimen part
View SamplesThis study describes physiological changes, morphological adaptations and the regulation of pathogen defense responses in Arabidopsis crown galls. Crown gall development was induced on intact plants under most natural conditions with Agrobacterium tumefaciens. Differential gene expression and the metabolite pattern was determined by comparing crown galls with mock-inoculated inflorescence stalk segments of the same age.
An integrated view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide approach.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Impact of human MLL/COMPASS and polycomb complexes on the DNA methylome.
Specimen part, Cell line
View SamplesThe association of DNA CpG methylation (or its absence) with occupancy of histone post translational modifications has hinted at an underlying crosstalk between histone marks and DNA methylation in patterning the human methylome, an idea supported by corresponding alterations to both histone marks and DNA methylation during malignant transformation. This study investigated the framework by which histone marks influence DNA methylation. Using RNAi in a human pluripotent embryonic carcinoma cell line we depleted essential components of the histone modifying complexes that establish the posttranslational modifications H3K4me3, H3K27me3, and H2AK119ub, and we assayed the impact of the subsequent loss of these marks on the DNA methylome. Absence of H2AK119ub resulted predominantly in hypomethylation across the genome. Removal of H3K4me3 or, surprisingly, H3K27me3 caused CpG island hypermethylation at a subset of loci. Intriguingly, many promoters were co-regulated by all three histone marks, becoming hypermethylated with loss of H3K4me3 or H3K27me3 and becoming hypomethylated with depletion of H2AK119ub, and many of these co-regulated loci were among those that are commonly, aberrantly hypermethylated in cancer.
Impact of human MLL/COMPASS and polycomb complexes on the DNA methylome.
Specimen part, Cell line
View SamplesWe have identified the transcription factor forkhead box protein F2 (Foxf2) to be upregulated in its expression during the EMT process and studied its functional contribution to EMT by siRNA-mediated knockdown in NMuMG cells treated for 4 days with TGFbeta followed by mRNA-sequencing. Our analysis revealed a dual role of Foxf2 during TGFbeta-induced EMT in promoting apoptosis while inducing cell junction breakdown and migration. Overall design: mRNA sequencing of NMuMG/E9 cells transfected with control siRNA or Foxf2 specific siRNA and treated with TGFbeta for 4 days
Foxf2 plays a dual role during transforming growth factor beta-induced epithelial to mesenchymal transition by promoting apoptosis yet enabling cell junction dissolution and migration.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Nucleosome positioning changes during human embryonic stem cell differentiation.
Specimen part, Cell line
View SamplesThe TET family of dioxygenases catalyze conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), but their involvement in establishing normal 5mC patterns during mammalian development and their contributions to aberrant control of 5mC during cellular transformation remains largely unknown. We depleted TET1, TET2, and TET3 by siRNA in a pluripotent embryonic carcinoma cell model and examined the impact on genome-wide 5mC and 5hmC patterns. TET1 depletion yielded widespread reduction of 5hmC, while depletion of TET2 and TET3 reduced 5hmC at a subset of TET1 targets suggesting functional co-dependence. TET2 or TET3-depletion also caused increased 5hmC, suggesting they play a major role in 5hmC removal. All TETs prevent hypermethylation throughout the genome, a finding dramatically illustrated in CpG island shores, where TET depletion resulted in prolific hypermethylation. Surprisingly, TETs also promote methylation, as hypomethylation was associated with 5hmC reduction. TET function was highly specific to chromatin environment: 5hmC maintenance by all TETs occurred at polycomb-marked chromatin and genes expressed at moderate levels; 5hmC removal by TET2 is associated with highly transcribed genes enriched for H3K4me3 and H3K36me3. Importantly, genes prone to hypermethylation in cancer become depleted of 5hmC with TET deficiency, suggesting the TETs normally promote 5hmC at these loci, and all three TETs are required for 5hmC enrichment at enhancers, a condition necessary for expression of adjacent genes. These results provide novel insight into the division of labor among TET proteins and reveal an important connection of TET activity with chromatin landscape and gene expression.
Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells.
Specimen part, Cell line
View Samples