While lung cancer is the leading cause of cancer death in the US, we have a limited understanding of the earliest molecular events preceding the onset of disease. Prior work has demonstrated that cigarette smoke creates a molecular “field of injury” throughout the airway epithelium and that there are distinct alterations in the airway transcriptome among smokers who have lung cancer. Molecular characterization of this airway “field of injury” in current and former smokers with premalignant lesions (PMLs) could provide novel insights into the earliest molecular events associated with lung carcinogenesis and identify relatively accessible biomarkers to guide lung cancer detection and early intervention. Using mRNA sequencing (mRNA-Seq), we profiled 82 cytologically normal bronchial airway epithelial cells collected during autofluorescence bronchoscopy from high-risk smokers with and without bronchial PMLs, 75 of which were used in downstream analyses. We identified 280 genes differentially expressed in the “field of injury” between subjects with (n=50) and without (n=25) PMLs (FDR<0.002), 81 of which were up-regulated in subjects with PMLs. Oxidative phosphorylation (OXPHOS), the electron transport chain (ETC), and mitochondrial protein transport pathways were strongly enriched among these up-regulated genes (FDR<0.05). We next demonstrated that OXPHOS activation is shared between the “field” and the PMLs with increased oxygen consumption and increased staining for mitochondrial markers in biopsies of PMLs from patients as well as an animal model of lung squamous cell carcinoma (SCC) premalignancy. The 280-gene signature also has a significant concordant relationship to gene expression changes identified in PMLs adjacent to lung SCC tumors, in lung SCC tumors, and in the cytologically normal airway of individuals with lung cancer (FDR<0.05). These findings suggest that these expression changes are reflective of early cancer-associated changes occurring throughout the respiratory tract, and that pathways such as OXPHOS may be targets for chemoprevention. We subsequently developed an airway gene expression biomarker that predicts the presence of PMLs (AUC=0.92, n=17 samples in test set) and show that changes in the biomarker score are associated with progression and regression of PMLs in an independent cohort (AUC=0.75, n=51 samples). The biomarker results indicate that molecular alterations in the field of injury are dynamic with progression or regression of PMLs, suggesting that these changes may be leveraged to stratify high-risk smokers with progressive disease into early intervention trials and monitor disease progression or recurrence. Overall design: 82 mRNA-Seq samples from 25 smokers without PMLs, 50 smokers with PMLs, and 7 smokers with metaplasia.
Detecting the Presence and Progression of Premalignant Lung Lesions via Airway Gene Expression.
No sample metadata fields
View SamplesWhile lung cancer is the leading cause of cancer death in the US, we have a limited understanding of the earliest molecular events preceding the onset of disease. Prior work has demonstrated that cigarette smoke creates a molecular “field of injury” throughout the airway epithelium and that there are distinct alterations in the airway transcriptome among smokers who have lung cancer. Molecular characterization of this airway “field of injury” in current and former smokers with premalignant lesions (PMLs) could provide novel insights into the earliest molecular events associated with lung carcinogenesis and identify relatively accessible biomarkers to guide lung cancer detection and early intervention. Using mRNA sequencing (mRNA-Seq), we profiled cytologically normal bronchial airway epithelial cells collected during autofluorescence bronchoscopy from high-risk smokers (n=75) with and without bronchial PMLs. We identified 280 genes differentially expressed in the “field of injury” between subjects with (n=50) and without (n=25) PMLs (FDR<0.002), 81 of which were up-regulated in subjects with PMLs. Oxidative phosphorylation (OXPHOS), the electron transport chain (ETC), and mitochondrial protein transport pathways were strongly enriched among these up-regulated genes (FDR<0.05). We next demonstrated that OXPHOS activation is shared between the “field” and the PMLs with increased oxygen consumption and increased staining for mitochondrial markers in biopsies of PMLs from patients as well as an animal model of lung squamous cell carcinoma (SCC) premalignancy. The 280-gene signature also has a significant concordant relationship to gene expression changes identified in PMLs adjacent to lung SCC tumors, in lung SCC tumors, and in the cytologically normal airway of individuals with lung cancer (FDR<0.05). These findings suggest that these expression changes are reflective of early cancer-associated changes occurring throughout the respiratory tract, and that pathways such as OXPHOS may be targets for chemoprevention. We subsequently developed an airway gene expression biomarker that predicts the presence of PMLs (AUC=0.92, n=17 samples in test set) and show that changes in the biomarker score are associated with progression and regression of PMLs in an independent cohort (AUC=0.75, n=51 samples). The biomarker results indicate that molecular alterations in the field of injury are dynamic with progression or regression of PMLs, suggesting that these changes may be leveraged to stratify high-risk smokers with progressive disease into early intervention trials and monitor disease progression or recurrence. Overall design: 51 mRNA-Seq samples from 23 subjects obtained via bronchscopy (18 subjects with 2 procedures, 5 subjects with 3 procedures).
Detecting the Presence and Progression of Premalignant Lung Lesions via Airway Gene Expression.
No sample metadata fields
View SamplesDifferentially expressed genes along the paraxial mesoderm of 12 somite stage zebrafish embryos are identified
Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation.
Specimen part
View SamplesFacioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder linked to contractions of the D4Z4 repeat array in the subtelomeric region of chromosome 4q. By comparing genome-wide gene expression data from muscle biopsies of patients with FSHD to those of 11 other neuromuscular disorders, we intend to identify disease-specific changes which are more likely to be involved in the early stages of the disease progression. The data will help to identify pathological mechanisms involved in FSHD.
DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1.
Disease, Disease stage
View SamplesSkin is the largest organ in the body and serves important barrier, regulatory, and sensory functions. Like other tissues, skin is subject to temporal fluctuations in physiological responses under both homeostatic and stressed states. To gain insight into these fluctuations, we investigated the role of the circadian clock in the transcriptional regulation of human epidermal samples collected in a time-ordered fashion. We also determined whether this circadian patterning could be applied to unordered (i.e., randomly collected) human epidermal samples. The purpose of this study was to gain insight into the evolutionarily-conserved rhythmic patterns of the circadian transcriptome in human skin and how it relates to published transcriptomes from other human tissues.
Population-level rhythms in human skin with implications for circadian medicine.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage <i>in vitro</i>.
Specimen part
View SamplesHere, we report the generation of human induced Pluripotent Stem (iPS) cell reporter line in which a venus fluorescent protein have been introduced into the PAX7 locus. We use microarrays to compare the transcriptome of PAX7-venus+ cells after 3 weeks of myogenic differentiation to that of undifferentiated iPS
Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage <i>in vitro</i>.
No sample metadata fields
View SamplesHere, we report the generation of human induced Pluripotent Stem (iPS) cell reporter line in which a venus fluorescent protein have been introduced into the MYOGENIN (MYOG) locus. We use microarrays to compare the transcriptome of MYOG-venus+ cells after 3 weeks of myogenic differentiation to that of undifferentiated iPS
Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage <i>in vitro</i>.
Specimen part
View SamplesHere, we use microarrays to compare the transcriptome of mouse Pax7-GFP ES reporter cell line after 3 weeks of myogenic differentiation in vitro to that of undifferentiated ES
Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage <i>in vitro</i>.
Specimen part
View SamplesStem and progenitor cells are the critical units for tissue maintenance, regeneration, and repair. The activation of regenerative events in response to tissue injury has been correlated with mobilization of tissue-resident progenitor cells, which is functional to the wound healing process. However, until now there has been no evidence for the presence of cells with a healing capacity circulating in healthy conditions. We identified a rare cell population present in the peripheral blood of healthy mice that actively participates in tissue repair. These Circulating cells, with a Homing ability and involved in the Healing process (CH cells), were identified by an innovative flowcytometry strategy as small cells not expressing CD45 and lineage markers. Their transcriptome profile revealed that CH cells are unique and present a high expression of key pluripotency- and epiblast-associated genes. More importantly, CH-labeled cells derived from healthy Red Fluorescent Protein (RFP)-transgenic mice and systemically injected into syngeneic fractured wild-type mice migrated and engrafted in wounded tissues, ultimately differentiating into tissue-specific cells. Accordingly, the number of CH cells in the peripheral blood rapidly decreased following femoral fracture. These findings uncover the existence of constitutively circulating cells that may represent novel, accessible, and versatile effectors of therapeutic tissue regeneration.
Identification of a New Cell Population Constitutively Circulating in Healthy Conditions and Endowed with a Homing Ability Toward Injured Sites.
Sex, Specimen part
View Samples