We conducted a genetic analysis of the developing temporo-mandibular joint (TMJ), a highly specialized synovial joint that permits movement and function of the mammalian jaw. First, we used laser capture microdissection to perform a genome-wide expression analysis of each of its developing components. The expression patterns of genes identified in this screen were examined in the TMJ and compared to other synovial joints including the shoulder joint and the hip joint. Striking differences were noted, indicating that the TMJ forms via a distinct molecular program. Several components of the Hedgehog (Hh) signaling pathway are among the genes identified in the screen, including Gli2, which is expressed specifically in the condyle and in the disk of the developing TMJ. We found that mice deficient in Gli2 display aberrant TMJ development such that the condyle loses its growth plate-like cellular organization and no disk is formed. In addition, we utilized a conditional strategy to remove activity of the Hh co-receptor encoded by Smo from chondrocyte progenitors. This cell autonomous loss of Hh signaling allows for disk formation, but the resulting structure fails to separate from the condyle. Thus, these experiments establish that Hh signaling acts at two distinct steps in disk morphogenesis, condyle initiation and disk-condyle separation, and provide a molecular framework for future studies of the TMJ.
Temporomandibular joint formation requires two distinct hedgehog-dependent steps.
Specimen part
View SamplesCardiac malformations due to aberrant development of the atrioventricular (AV) valves are among the most common forms of congenital heart disease. At localized swellings of extracellular matrix known as the endocardial cushions, the endothelial lining of the heart undergoes an epithelial to mesenchymal transition (EMT) to form mesenchymal progenitors of the AV valves. Further growth and differentiation of these mesenchymal precursors results in formation of portions of the atrial and ventricular septae, and generation of thin, pliable valves. The transcription factor Gata4 is expressed in the endothelium and mesenchyme of the AV valves. Using a Tie2-Cre transgene, we selectively inactivated Gata4 within endothelial-derived cells. Mutant endothelium failed to undergo EMT, resulting in hypocellular cushions. Mutant cushions had decreased levels of Erbb3, an EGF-family receptor essential for EMT in the atrioventricular cushions. In Gata4 mutant embryos, Erbb3 downregulation was associated with impaired activation of Erk, which is also required for EMT. Expression of a Gata4 mutant protein defective in interaction with Friend of Gata (FOG) cofactors rescued the EMT defect, but resulted in decreased proliferation of mesenchyme and hypoplastic cushions that failed to septate the ventricular inlet. We demonstrate two novel functions of Gata4 in development of the AV valves. First, Gata4 functions as an upstream regulator of an Erbb3-Erk pathway necessary for EMT, and second, Gata4 acts to promote cushion mesenchyme growth and remodeling.
Development of heart valves requires Gata4 expression in endothelial-derived cells.
No sample metadata fields
View SamplesPurpose: In this study, we identify global transcriptome alterations following removal of individual or multiple miR-196 family members in mouse. Next generation sequencing-derived transcriptome profiling (RNA-seq) was performed. Methods: A GFP reporter cassette was engineered to replace the mature miR-196a1 and miR-196a2 miRNA genomic loci in mouse (creating a knockout). GFP positive cells from an extensive knock-out allellic series of the three individual miR-196 genes, as detailed below, were isolated from E9.5 mouse embryos by FACS. miR-196b knockout cells were not marked with a fluorescent reporter and an assumption of co-expression with miR-196a2 was made. mRNA profiles were generated by deep sequencing in a minimum of four biological replicates per genotype, using an Illumina HiSeq 2000 instrument. Read information was mapped to the mouse genome and processed as described. Conclusions: Our study represents the first detailed analysis of embryonic transcriptomes following loss of single and multiple miR-196 family members. We identify complex dysregulation of many Hox genes, in addition to key developmental signalling pathways involved in somitogenesis. Overall design: mRNA profiles of E9.5 mouse embryos with miR-196 loss-of-function were generated by deep sequencing, in a minimum of four biological replicates, using Illumina HiSeq 2000.
Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs.
No sample metadata fields
View SamplesWe determined by RNA-seq gene expression changes in mESCs following the induced expression of WT-, KRA- or DEA-CBX2 variants in Cbx2 null cells. Overall design: We generated mRNA profiles from 5 mESC lines (2 WT, 2 KRA, 1 DEA) treated with doxycycline to express similar levels of CBX2, and, from a 6th condition where one of the KRA mESC lines was treated with more doxycycline. Each sample was compared to its own control, which is no doxycycline treatment, to determine the effect of induced CBX2 on gene expression changes. Each sample (with and without doxycycline treatment) was performed with 2 or 3 biological replicates.
Mutation of a nucleosome compaction region disrupts Polycomb-mediated axial patterning.
Specimen part, Subject
View SamplesTranscriptional profiles of HCMV or Mock infected neonatal and adult were anayzed
IL-12 and type I IFN response of neonatal myeloid DC to human CMV infection.
Specimen part, Time
View SamplesLangerhans cells (LCs) populate the mucosal epithelium, a major entry portal for pathogens, yet their ontogeny remains unclear. In contrast to skin LCs originating from self-renewing radioresistant embryonic precursors, we found that oral mucosal LCs derive from circulating radiosensitive precursors. Mucosal LCs can be segregated into CD103+CD11blow (CD103+LCs) and CD11b+CD103- (CD11b+LCs) subsets. We further demonstrated that similar to non-lymphoid dendritic cells (DCs), CD103+LCs originate from pre-DCs, whereas CD11b+LCs differentiate from both pre-DCs and monocytic precursors. Despite this ontogenetic discrepancy between skin and mucosal LCs, transcriptomic signature and immunological function of oral LCs highly resemble those of skin LCs but not DCs. These findings, along with their epithelial position, morphology and expression of LC-associated phenotype strongly suggest that oral mucosal LCs are genuine LCs. Collectively, in a tissue-dependent manner, murine LCs differentiate from at least three distinct precursors (embryonic, pre-DCs and monocytic) in steady state Overall design: The following cells were isolated from mice (2-4 replicates): Lung DCs, mucosal CD103+ LC, mucosal CD11b+ LC, Skin LC. Transcriptome analysis was performed.
Distinct Murine Mucosal Langerhans Cell Subsets Develop from Pre-dendritic Cells and Monocytes.
No sample metadata fields
View SamplesIL17-producing ?d T cells (?d T17) mainly develop in the prenatal phase and persist as long-living self-renewing effector cell in all kind of tissues. They express polyclonal T-cell receptors (TCR), comprising public V?4+ and V?6+ TCRs with germline-like rearrangements. In particular, V?6+ T cells have recently been found in a variety of tissues including enthesis, gingiva or skin. However, their exchange between tissues and the mechanisms of tissue-specific adaptation and residency remain poorly understood. Here, we profiled V?6+ T cells isolated from thymus, peripheral lymph nodes (pLN) and skin through single-cell RNA-seq technology and compared those to V?4+ T cells. Our data demonstrated that V?6+ T cells formed highly homogenous cell populations that could be separated by tissue-specific gene expression signatures. Overall design: Sort V?4 and V?6 ?dT cells from peripheral lymph nodes, ear skin and thymus, then do 3'-RNA single cell sequencing (10x genomics).
Single-Cell Transcriptomics Identifies the Adaptation of Scart1<sup>+</sup> Vγ6<sup>+</sup> T Cells to Skin Residency as Activated Effector Cells.
Age, Specimen part, Cell line, Subject
View SamplesAs part of our studies on the biological functions of polyamines we have used a mutant of Escherichia coli that lacks all the genes for polyamine biosynthesis for a global transcription analysis on the effect of added polyamines. The most striking early response to polyamine addition is the increased expression of the genes for the glutamate dependent acid resistance system (GDAR) that is essential for the survival of bacteria when passing through the acid environment of the stomach. Not only were the two genes for glutamate decarboxylases (gadA and gadB) and the gene for glutamate --aminobutyrate antiporter (gadC) induced by polyamine addition, but also the various genes involved in the regulation of this system were induced. We confirmed the importance of polyamines for the induction of the GDAR system by direct measurement of glutamate decarboxylase activity and acid-survival. Effects of deletions of the regulatory genes in the GDAR system and on the effects of overproduction of two of these genes were also studied. Strikingly, overproductions of the alternate sigma factor rpoS and of the regulatory gene gadE resulted in very high levels of glutamate decarboxylase and almost complete protection against acid stress even in the absence of any polyamines. Thus, these data show that a major function of polyamines in E. coli is protection against acid stress by increasing the synthesis of glutamate decarboxylase, presumably by increasing the levels of the rpoS and gadE regulators.
Polyamines are critical for the induction of the glutamate decarboxylase-dependent acid resistance system in Escherichia coli.
Treatment
View SamplesRegulatory T cells (T regs) maintain host self-tolerance but are a major barrier to effective cancer immunotherapy. T regs subvert beneficial anti-tumor immunity by modulating inhibitory receptor (IR) expression on tumor infiltrating lymphocytes (TILs); however, the underlying mediators and mechanisms remain elusive. Here we show that interleukin-10 (IL10) and interleukin-35 (IL35; Ebi3/IL12a heterodimer) are divergently expressed by T reg subpopulations in the tumor microenvironment (TME) and cooperatively promote intratumoral T cell exhaustion. T reg -restricted deletion of Il10 and/or Ebi3 resulted in delayed tumor growth, loss of multi-IR expression, and reduced intratumoral CD8 + T cell exhaustion signature. While Il10 or Ebi3 loss was associated with reduced expression of B lymphocyte-induced maturation protein-1 (BLIMP1; Prdm1), IL10 and IL35 differentially impacted effector versus memory T cell fates, respectively, highlighting their differential, partially overlapping but non-redundant regulation of anti-tumor immunity. Our results reveal previously unappreciated cooperative roles for IL10 and IL35, produced by limits effective anti-tumor immunity Overall design: TIL CD8 cells from Treg specific IL10, IL35 and double knockouts, sorted into populations based on exhaustion markers. TIL Tregs sorted based on IL10 and IL35 expression.
Adaptive plasticity of IL-10<sup>+</sup> and IL-35<sup>+</sup> T<sub>reg</sub> cells cooperatively promotes tumor T cell exhaustion.
Specimen part, Subject
View SamplesUsing RNA-Seq, we reported novel findings in the comparison of transcriptome profiles of isogenic HMDM and IPSDM during differentiation and polarization. First, IPSDM lost expression of pluripotency markers, had remarkably distinct gene expression profiles relative to precursor iPSCs, and had largely similar gene expression as HMDM. Second, macrophage polarization to M1 was associated with a dramatic change in the transcriptome; expression profiles of IPSDM- and HMDM-derived M1 lines were highly correlated with each other but much less so with their respective IPSDM and HMDM precursors. Third, M2-HMDM lines had limited difference in gene expression compared to their non-polarized precursors, likely due to the known M2-like phenotype of M-CSF differentiated macrophages and their similarity to the IL-4 derived M2 phenotype Finally, through RNA-Seq we identified many new genes modulated during polarization in both HMDM and IPSDM thus providing novel, and potentially regulatory, candidates that warrant further study. Overall design: iPS, IPSDM (including M1/M2) and HMDM (including M1/M2)cells were sequenced by Illumina HiSeq 2000 with poly-A selection
Functional analysis and transcriptomic profiling of iPSC-derived macrophages and their application in modeling Mendelian disease.
No sample metadata fields
View Samples