IgA nephropathy (IgAN) is the most common glomerulonephritis in the world. The disease is characterized by galactose deficient IgA (gd-IgA) in the circulation forming immune complexes. The complexes are deposited in the glomerular mesangium leading to inflammation and loss of renal function, but the pathophysiology of the disease is still not fully understood. Using an integrated global transcriptomic and proteomic profiling approach we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsies from patients with IgAN. The influence of galactose deficient IgA (gd-IgA) on mesangial cells was investigated by proteomic profiling. By utilizing the previous published literature curated glomerular cell type-specific genes, we found that mesangial cells and their positive standard genes play a more dominant role in IgAN comparing to the podocyte standard genes. Additionally, the patient clinical parameters (serum creatinine values and estimated glomerular filtration rate - eGFR) significantly correlate with z-scores derived from expression profile of mesangial cell positive standard genes. 22 common pathways were identified both from in vivo microarray data and in vitro mesangial cell mass spectrometry data and the main part was inflammatory pathways. The correlation between clinical data and mesangial standard genes allows for a better understanding of the onset of IgAN. The genes, proteins and their corresponding pathways identified in this paper give us novel insights into the pathophysiological mechanisms leading to progression of IgAN.
Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy.
Specimen part
View SamplesWe identified SLC44A5 as a gene associated with birth weight in cattle based on genome wide association studies.
The molecular effects of a polymorphism in the 5'UTR of solute carrier family 44, member 5 that is associated with birth weight in Holsteins.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance.
No sample metadata fields
View SamplesTo investigate genes that might influence resistance to infection through IGF1R, we screened human breast cancer-derived OCUB-M cells transfected with expression vector encoding IGF1R using microarray analysis.
Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance.
No sample metadata fields
View SamplesTo identify genes that influence resistance to mastitis, we scanned
Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance.
No sample metadata fields
View SamplesWe generated hiPSCs from patients fibloblast with retinitis pigmentosa (RP) using retrovirus and Sendai virus vectors, which we differentiated into hiPSC derived retinal pigment epithelium using two different methods (SDIA and SFEB methods).
Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application.
Cell line
View SamplesDevelopment and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial function and biogenesis. Here, we describe a zebrafish mutant for the gene mia40a, the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate at the larval stage. We generated a rich transcriptomic and proteomic resource that allowed us to identify abnormalities in the development of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of these diseases. Overall design: Embryos obtained from an in-cross of heterozygous mia40awaw1/+ siblings were genotyped at 3 dpf. Pools of five mia40+/+ or mia40waw1/waw1 larvae, derived from the same clutch, were collected at indicated time-points for RNA extraction and transcriptomic profiling. Larvae used in 8 dpf experiments were subjected to external feeding from 5dpf before being collected for the analysis at 8dpf.
Loss of the Mia40a oxidoreductase leads to hepato-pancreatic insufficiency in zebrafish.
Specimen part, Subject
View SamplesSeries of samples studying effect of knock out Emx2 in urogenital epithelium of mouse embryos at E10.5.
Abnormal epithelial cell polarity and ectopic epidermal growth factor receptor (EGFR) expression induced in Emx2 KO embryonic gonads.
No sample metadata fields
View SamplesRetinoid X receptor (RXR)-gamma is a nuclear receptor-type transcription factor expressed mostly in the skeletal muscle, and regulated by nutritional conditions. Previously, we established transgenic mice overexpressing RXR-gamma in the skeletal muscle (RXR-gamma mice), which showed lower blood glucose than the control mice. We used microarrays to investigate their glucose metabolism gene expression change.
Increased systemic glucose tolerance with increased muscle glucose uptake in transgenic mice overexpressing RXRγ in skeletal muscle.
Sex, Age
View SamplesC. elegans exhibits thermotaxis, where most of the animals that had been cultivated at a particular temperature ranging from 15C to 25C for a few hours with a food source and then placed on a thermal gradient for an hour migrate to the cultivation temperature. In addition, animals that were previously conditioned to migrate to a certain temperature are capable of migrating to a new cultivation temperature a few hours after the cultivation temperature was shifted to the new temperature
Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans.
Specimen part
View Samples