BW25113 wild type cells grown to OD = 0.8 in LB, add 2 ug/mL nalidixic acid or 10 ug/mL azlocillin for 90 min. Control was without any antibiotic.
Cryptic prophages help bacteria cope with adverse environments.
Treatment
View SamplesChlamydia trachomatis serovariants are responsible for either Trachoma, the leading cause of infectious blindness or sexually transmitted disease, wherein the endocervix is the most frequently infected site in women. Disease caused by Chlamydia typically involves chronic inflammation and scarring. Recent work with a live-attenuated A2497 plasmid deficient vaccine strain (A2497-) demonstrated protection in nonhuman primates against trachoma and a lack of measurable ocular pathology in A2497- infected monkeys. We therefore performed host cell transcriptome analysis of Hela cells infected with A2497 plasmid-containing (A2497) and A2497- Chlamydia over time. Our results indicate that relative to wild type A2497, the A2497- variant illicits a transcriptome response indicative of lowered inflammation response a delayed apoptosis response, a reduction in immune cell recruitement cytokine expression and a reduction in genes involved in cell proliferation and or fibrosis-like activities. The data provided here suggests a model that may explain how plasmid deficient chlamydia may provide an immuno-protective response without the pathology normally seen with plasmid-containing bacteria.
Transcriptional profiling of human epithelial cells infected with plasmid-bearing and plasmid-deficient Chlamydia trachomatis.
Disease, Cell line
View SamplesThe excessive perchlorate utilization as an oxidizer in rocket propellants and blasting agents had led to the contamination of surface and ground waters. This chemical is known to compete with iodine for binding to the thyroid membrane receptors potentially causing hypothyroidism and fetal retardation in pregnant women. Nevertheless, to date, its biological effects are not completely understood. We have investigated the molecular mechanisms responsive to perchlorate in the nematode C. elegans to nominate a candidate gene for further peruse in the development of a C.elegans perchlorate biosensor. Perchlorate (1 mg/mL) affected the transcriptional response of Regulation of developmental process, growth, defense mechanisms and stress response, among other biological processes.
Perchlorate detection <i>via</i> an invertebrate biosensor.
Treatment
View SamplesThe transcription factor MEF2C is specifically induced by VEGF in endothelial cells. To delineate target genes of MEF2C in endothelial cells, which might be important during angiogenesis also, MEF2C was overexpressed adenovirally in human umbilical vein endothelial cells (HUVECs) over a period of 8 to 32 hours.
The transcription factor MEF2C negatively controls angiogenic sprouting of endothelial cells depending on oxygen.
Specimen part, Treatment
View SamplesInterleukin-17 (IL-17) is essential in host defense against extracellular bacteria and fungi, especially at mucosal sites, but it also contributes significantly to inflammatory and autoimmune disease pathologies. Binding of IL-17 to its receptor leads to recruitment of the adaptor protein CIKS/Act1 via heterotypic association of their respective SEFIR domains and to activation of the transcription factor NF-kB; it is not known whether CIKS and/or NF-kB are required for all gene induction events. Here we report that CIKS is essential for all IL-17 induced immediate-early genes in primary mouse embryo fibroblasts, while NF-kB is profoundly involved. We also identify a novel sub-domain in the N-terminus of CIKS that is essential for IL-17-mediated NF-kB activation. This domain is both necessary and sufficient for the interaction between CIKS and TRAF6, an adaptor required for NF-kB activation. The ability of decoy peptides to block this interaction may provide a new therapeutic strategy for intervention in IL-17-driven autoimmune and inflammatory diseases.
IL-17-induced NF-kappaB activation via CIKS/Act1: physiologic significance and signaling mechanisms.
Specimen part, Treatment
View SamplesGene expression analysis identified a specific signature of differentially expressed genes discriminating TTLshort and TTLlong phenotypes.
Early relapse in ALL is identified by time to leukemia in NOD/SCID mice and is characterized by a gene signature involving survival pathways.
Specimen part
View SamplesAngiogenesis is defined as the formation of new capillaries by sprouting from preexisting vessels. It is mainly triggered by vascular endothelial growth factor (VEGF) and occurs in the adult primarily in wound healing processes or in pathologic tumor vessel growth. To identify genes specifically triggered by VEGF and involved in the process of angiogenesis, we utilized Affymetrix microarrays hybridized with cRNA of human umbilical vein endothelial cells (HUVEC) stimulated with either the main trigger of angiogenesis, VEGF or a more general mitogenic growth factor, EGF.
The VEGF-induced transcriptional response comprises gene clusters at the crossroad of angiogenesis and inflammation.
No sample metadata fields
View SamplesAngiogenesis, the formation of new capillaries by sprouting from preexisting vessels, is mainly induced by VEGF-A. To identify genes which are induced by VEGF-A in endothelial cells, HUVEC were starved and induced by VEGF-A165 for 30, 60 and 150min. RNA of induced and uninduced cells was isolated and subjected to microarray analysis using Affymetrix microarray.
The VEGF-induced transcriptional response comprises gene clusters at the crossroad of angiogenesis and inflammation.
Specimen part, Treatment, Time
View SamplesResistance to amebiasis is associated with a polymorphism in the leptin receptor. Previous studies demonstrated that humans with the ancestral Q223 leptin receptor allele were nearly four times less likely to be infected with Entamoeba histolytica than those carrying the mutant R223 allele. We hypothesized that the Q223 allele protected against E. histolytica via STAT3-mediated transcription of genes required for mucosal immunity. To test this, mice containing the humanized LEPR Q or R allele at codon 223 were intracecally infected with E. histolytica. Susceptibility to amebiasis was assessed, and cecal tissues analyzed for changes in gene expression. By 72 h post-challenge all Q223 mice had cleared E. histolytica, whereas 39% of 223R mice were infected. 37 genes were differentially expressed in response to infection at 72 h, including pro-inflammatory genes (CXCL2, calprotectin (S100A8/9), Pla2g7, Itbg2, and MMP9) and functions pertaining to the movement and activity of immune cells. A comparison at 12 h post-challenge of infected Q223 vs. R223 mice identified a subset of differentially-expressed genes, many of which were closely linked to leptin signaling. Further analyses indicated that the Q223 gene expression pattern was consistent with a suppressed apoptotic response to infection, while 223R showed increased cellular proliferation and recruitment. These studies are the first to illuminate the downstream effects of leptin receptor polymorphisms on intestinal infection by E. histolytica. As such, they are important for the insight that they provide to this previously uncharacterized mechanism of mucosal immunity. Resistance to amebiasis is associated with a polymorphism in the leptin receptor. Previous studies demonstrated that humans with the ancestral Q223 leptin receptor allele were nearly four times less likely to be infected with Entamoeba histolytica than those carrying the mutant R223 allele. We hypothesized that the Q223 allele protected against E. histolytica via STAT3-mediated transcription of genes required for mucosal immunity. To test this, mice containing the humanized LEPR Q or R allele at codon 223 were intracecally infected with E. histolytica. Susceptibility to amebiasis was assessed, and cecal tissues analyzed for changes in gene expression. By 72 h post-challenge all Q223 mice had cleared E. histolytica, whereas 39% of 223R mice were infected. 37 genes were differentially expressed in response to infection at 72 h, including pro-inflammatory genes (CXCL2, calprotectin (S100A8/9), Pla2g7, Itbg2, and MMP9) and functions pertaining to the movement and activity of immune cells. A comparison at 12 h post-challenge of infected Q223 vs. R223 mice identified a subset of differentially-expressed genes, many of which were closely linked to leptin signaling. Further analyses indicated that the Q223 gene expression pattern was consistent with a suppressed apoptotic response to infection, while 223R showed increased cellular proliferation and recruitment. These studies are the first to illuminate the downstream effects of leptin receptor polymorphisms on intestinal infection by E. histolytica. As such, they are important for the insight that they provide to this previously uncharacterized mechanism of mucosal immunity.
Effect of the leptin receptor Q223R polymorphism on the host transcriptome following infection with Entamoeba histolytica.
Specimen part, Time
View SamplesA delay in the mammalian inflammatory response is a prominent feature of infection with Yersinia pestis, the agent of bubonic and pneumonic plague. Y. pestis factors have been identified that either do not stimulate a normal inflammatory response, or actively suppress it. Prominent among these are components of the Type III secretion system that is encoded on the Yersinia virulence plasmid (pYV). We used a rat model of bubonic plague to characterize the kinetics and extent of the mammalian transcriptomic response to infection with wild-type or pYV-negative Y. pestis in the draining lymph node. Remarkably, dissemination and multiplication of wild-type Y. pestis during the bubonic stage of disease did not induce any detectable gene expression response by host lymph node cells. This was followed, however, by an extensive transcriptomic response, including upregulation of several cytokine, chemokine, and other immune response genes, after systemic spread during septicemic plague. Matched lymph node samples used for histopathology and extracellular cytokine measurements, combined with the microarray data set, broadly outlined the mammalian immune response to Y. pestis and how it is influenced by pYV-encoded factors. The results indicate that both WT and pYV Y. pestis induce primarily a Th17 response, and not a Th1 or Th2 response. In the absence of pYV, a sustained recruitment of polymorphonuclear leukocytes, the major Th17 effector cell, to the lymph node resulted in clearance of infection. Thus, the ability to counteract a Th17- driven PMN response in the lymph node appears to be a major function of the Y. pestis virulence plasmid. In contrast, classic markers of the proinflammatory response and macrophage activation, such as TNF- and IFN-, were not induced at all by pYV Y. pestis, and appeared only late in infection with WT Y. pestis.
Transcriptomic and innate immune responses to Yersinia pestis in the lymph node during bubonic plague.
Sex, Specimen part, Treatment, Time
View Samples