We report the application of RNA sequencing for transcriptome analysis of virus infected tissues, enabling the study of tissue responses to infection Overall design: Transcriptome analysis of 2 different tissues infected with two different viruses
Correction for Weisblum et al., "Zika Virus Infects Early- and Midgestation Human Maternal Decidual Tissues, Inducing Distinct Innate Tissue Responses in the Maternal-Fetal Interface".
Specimen part, Subject, Time
View SamplesTranscriptional profiling of the zebrafish embryonic host response to a systemic bacterial infection with Salmonella typhimurium (strain SL1027); comparison between traf6 knock-down and control morpholino treated embryos. Overall design: All infection experiments were performed using mixed egg clutches of ABxTL strain zebrafish. Embryos injected with traf6 morpholino or a 5bp mismatch control morpholino were staged at 27 hours post fertilization (hpf) by morphological criteria and approximately 250 cfu of DsRed expressing Salmonella bacteria were injected into the caudal vein close to the urogenital opening. As a control an equal volume of PBS was likewise injected. Pools of 20-40 infected and control embryos were collected 8 hours post infection (hpi). The whole procedure was preformed in triplicate on separate days. Total RNA of the biological triplicates was pooled using equal amounts of RNA prior to RNAseq library preparation.
Transcriptome analysis of Traf6 function in the innate immune response of zebrafish embryos.
No sample metadata fields
View SamplesARC (NSC 188491, SMA-491), 4-amino-6-hydrazino-7-beta-d-ribofuranosyl-7H-pyrrolo-(2,3-d)-pyrimidine-5-carboxamide, is a nucleoside analog with profound in vitro anti-cancer activity. First identified in a high-throughput screen for inhibitors of p21 mRNA expression, subsequent experiments showed that ARC also repressed expression of hdm2 and survivin, leading to its classification as a global inhibitor of transcription 1. The following Hu U133 plus 2.0 arrays represent single time point (24 hour) gene expression analysis of transcripts altered by ARC treatment. Arrays for the other compounds (sangivamycin and doxorubicin) are included as comparators.
ARC (NSC 188491) has identical activity to Sangivamycin (NSC 65346) including inhibition of both P-TEFb and PKC.
No sample metadata fields
View SamplesEffect of absence of interaction with MHC class II on memory CD4 T cells
Noncognate interaction with MHC class II molecules is essential for maintenance of T cell metabolism to establish optimal memory CD4 T cell function.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Prominent hippocampal CA3 gene expression profile in neurocognitive aging.
No sample metadata fields
View SamplesFunctional alterations in medial temporal lobe structures, particularly the hippocampus, are central to age-related deficits in episodic memory. Research in aging laboratory animals has characterized physiological and cellular alterations in the hippocampus that occur in association with the presence and severity of such cognitive impairment. The current study compares alterations across hippocampal subregions by gene expression profiling in a rat model that closely mirrors individual differences in neurocognitive features of aging humans across a spectrum of outcomes, including both impaired memory and preserved function. Using mRNA profiling of the CA1, CA3 and dentate gyrus subregions, we have distinguished between gene groups and pathways related to chronological age and those specifically associated with impaired or preserved cognitive ability in aged rats. We confirmed earlier reported changes in gene groups related to inflammation and oxidative stress in multiple subregions and found these to be more associated with chronological age than cognitive function per se. The CA3 profile was best able to segregate aged impaired, aged unimpaired and young subject groups from each other. Characterization of gene changes that distinguished preserved from impaired function among the aged animals found altered expression of synaptic plasticity and neurodegenerative disease-related genes. Together these gene changes suggest recruitment of adaptive mechanisms that mediate synaptic plasticity to maintain function and structural integrity in aged unimpaired rats that does not occur in aged impaired animals.
Prominent hippocampal CA3 gene expression profile in neurocognitive aging.
No sample metadata fields
View SamplesFunctional alterations in medial temporal lobe structures, particularly the hippocampus, are central to age-related deficits in episodic memory. Research in aging laboratory animals has characterized physiological and cellular alterations in the hippocampus that occur in association with the presence and severity of such cognitive impairment. The current study compares alterations across hippocampal subregions by gene expression profiling in a rat model that closely mirrors individual differences in neurocognitive features of aging humans across a spectrum of outcomes, including both impaired memory and preserved function. Using mRNA profiling of the CA1, CA3 and dentate gyrus subregions, we have distinguished between gene groups and pathways related to chronological age and those specifically associated with impaired or preserved cognitive ability in aged rats. We confirmed earlier reported changes in gene groups related to inflammation and oxidative stress in multiple subregions and found these to be more associated with chronological age than cognitive function per se. The CA3 profile was best able to segregate aged impaired, aged unimpaired and young subject groups from each other. Characterization of gene changes that distinguished preserved from impaired function among the aged animals found altered expression of synaptic plasticity and neurodegenerative disease-related genes. Together these gene changes suggest recruitment of adaptive mechanisms that mediate synaptic plasticity to maintain function and structural integrity in aged unimpaired rats that does not occur in aged impaired animals.
Prominent hippocampal CA3 gene expression profile in neurocognitive aging.
No sample metadata fields
View SamplesFunctional alterations in medial temporal lobe structures, particularly the hippocampus, are central to age-related deficits in episodic memory. Research in aging laboratory animals has characterized physiological and cellular alterations in the hippocampus that occur in association with the presence and severity of such cognitive impairment. The current study compares alterations across hippocampal subregions by gene expression profiling in a rat model that closely mirrors individual differences in neurocognitive features of aging humans across a spectrum of outcomes, including both impaired memory and preserved function. Using mRNA profiling of the CA1, CA3 and dentate gyrus subregions, we have distinguished between gene groups and pathways related to chronological age and those specifically associated with impaired or preserved cognitive ability in aged rats. We confirmed earlier reported changes in gene groups related to inflammation and oxidative stress in multiple subregions and found these to be more associated with chronological age than cognitive function per se. The CA3 profile was best able to segregate aged impaired, aged unimpaired and young subject groups from each other. Characterization of gene changes that distinguished preserved from impaired function among the aged animals found altered expression of synaptic plasticity and neurodegenerative disease-related genes. Together these gene changes suggest recruitment of adaptive mechanisms that mediate synaptic plasticity to maintain function and structural integrity in aged unimpaired rats that does not occur in aged impaired animals.
Prominent hippocampal CA3 gene expression profile in neurocognitive aging.
No sample metadata fields
View SamplesIn gastrulation, distinct progenitor cell populations are induced and sorted into the three germ layers ectoderm, mesoderm and endoderm. In order to identify genes involved in germ layer specification and morphogenesis, we identified genes differentially expressed between ectodermal and mesendodermal progenitor cells. To do so, we first generated highly enriched pools of ectodermal and mesendodermal progenitor cells. Mesendodermal cells were generated by over-expressing the Nodal signal Cyclops in wild type embryos and ectodermal cells were taken from mz-one-eyed-pinhead (oep) mutant embryos. We then compared the transcriptome of ectodermal versus mesendodermal cells taken from embryos at 7 hours post fertilization (hpf). In wild type embryos at this stage (70% epiboly), the first ectodermal and mesendodermal progenitor cells have already been sorted into their respective germ layers and ingression of mesendodermal progenitors is still ongoing.
Identification of regulators of germ layer morphogenesis using proteomics in zebrafish.
Age, Specimen part, Subject, Time
View SamplesChlorine is a widely used industrial chemical that is also considered a chemical threat agent. Inhalation of chlorine gas can cause acute injury to the respiratory tract, including the death of airway epithelial cells. Failure to efficiently repair the epithelial damage is associated with long-term respiratory abnormalities, including airway fibrosis. We previously developed a model of airway injury in which mice exposed to chlorine gas exhibit epithelial damage and develop fibrosis in large airways.
Inhibition of chlorine-induced airway fibrosis by budesonide.
Sex, Age, Specimen part, Treatment
View Samples