This is a matched-pair analysis of ductal carcinoma in situ (DCIS) and invasive component (IDC) of nine breast ductal carcinoma to identify novel molecular markers characterizing the transition from DCIS to IDC for a better understanding of its molecular biology.
Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis.
No sample metadata fields
View SamplesWe present an organoid regeneration assay in which freshly dissociated human mammary epithelial cells from healthy donors are grown in adherent/rigid or floating/compliant collagen I gels. In both conditions, luminal progenitors (CD49f+EpCAM+) form spheres, whereas basal cells (CD49fhiEpCAM-) generate branched ductal structures. However, in compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland.
Quantification of regenerative potential in primary human mammary epithelial cells.
Sex, Specimen part, Disease, Subject
View SamplesDuring Epithelial-Mesenchymal Transition (EMT), apical-basal polarized epithelial cells are converted to front-to-back polarized mesenchymal cells that only form loose cell-cell adhesions. These phenotypic changes are accompanied by acquisition of increased motility and invasiveness. EMT programs are orchestrated by pleiotropic transcription factors (TFs), such as Twist1 and Snail1 and effect morphogenetic steps during embryogenesis, including mesoderm formation and neural crest migration. EMTs have also been implicated in the acquisition of aggressive traits by carcinoma cells, including the ability to complete several steps of the metastatic cascade as well as propagation of the tumor by single cells (clonogenicity), a defining trait of tumor-initiating or cancer stem cells. However, the molecular links between the expression of EMT-TFs, the process of EMT and acquisition of clonogenicity remain obscure.
Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation.
Sex, Specimen part, Cell line
View SamplesExamination of gene expression patterns in lineage negative FLT3-ITD and pMIG-transduced BM cells via microarray study.
RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells.
Specimen part
View SamplesTo attain deeper insight into metabolic alterations in Trpm6 gene deficient mice we used microarrays for profiling of hepatic transcripts of Trpm6 ko and control mice.
Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival.
Sex, Age
View SamplesTumor relapse is associated with dismal prognosis, but responsible biological principles remain incompletely understood. To isolate and characterize relapse-inducing cells, we used genetic engineering and proliferation-sensitive dyes in patient-derived xenografts of acute lymphoblastic leukemia (ALL). We identified a rare subpopulation that resembled relapse-inducing cells with combined properties of long-term dormancy, treatment resistance, and stemness. Single-cell and bulk expression profiling revealed their similarity to primary ALL cells isolated from pediatric and adult patients at minimal residual disease (MRD). Therapeutically adverse characteristics were reversible, as resistant, dormant cells became sensitive to treatment and started proliferating when dissociated from the in vivo environment. Our data suggest that ALL patients might profit from therapeutic strategies that release MRD cells from the niche. Overall design: Gene expression profiles from two PDX ALL Samples (ALL-199 & ALL-265) were generated for either dormant (LRC) vs. dividing (non-LRC) cells or drug treated vs. non-treated cells. For single cell analysis one mouse were analyzed for each condition.
Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia.
Specimen part, Treatment, Subject
View Samplesd-serine is naturally present throughout the human body. It is also used as add-on therapy for treatment-refractory schizophrenia. d-Serine interacts with the strychnine-insensitive glycine binding site of NMDA receptor, and this interaction could lead to potentially toxic activity (i.e., excitotoxicity) in brain tissue. The transcriptomic changes that occur in the brain after d-serine exposure have not been fully explored.
D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats.
Sex
View SamplesSkin and bladder epithelia form effective permeability barriers through the activation of distinct differentiation gene programs. Employing a genome-wide gene expression study, we identified transcription regulators whose expression correlates highly with that of differentiation markers both in bladder and skin, including the Grainyhead factor Get1/Grhl3, already known to be important for epidermal barrier formation. In the bladder, Get1 is most highly expressed in the differentiated umbrella cells and its mutation in mice leads to a defective bladder epithelial barrier formation due to failure of apical membrane specialization. Genes encoding components of the specialized urothelial membrane, the uroplakins, were downregulated in Get1-/- mice. At least one of these genes, Uroplakin II, is a direct target of Get1. The urothelial-specific activation of the Uroplakin II gene is due to selective binding of Get1 to the Uroplakin II promoter in urothelial cells, most likely regulated by histone modifications. These results demonstrate a key role for Get1 in urothelial differentiation and barrier formation.
The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation.
Specimen part
View SamplesSkin and bladder epithelia form effective permeability barriers through the activation of distinct differentiation gene programs. Employing a genome-wide gene expression study, we identified transcription regulators whose expression correlates highly with that of differentiation markers both in bladder and skin, including the Grainyhead factor Get1/Grhl3, already known to be important for epidermal barrier formation. In the bladder, Get1 is most highly expressed in the differentiated umbrella cells and its mutation in mice leads to a defective bladder epithelial barrier formation due to failure of apical membrane specialization. Genes encoding components of the specialized urothelial membrane, the uroplakins, were downregulated in Get1-/- mice. At least one of these genes, Uroplakin II, is a direct target of Get1. The urothelial-specific activation of the Uroplakin II gene is due to selective binding of Get1 to the Uroplakin II promoter in urothelial cells, most likely regulated by histone modifications. These results demonstrate a key role for Get1 in urothelial differentiation and barrier formation.
The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation.
Specimen part
View SamplesThe expansion, trafficking and functional effectiveness of adoptively transferred CD8+ T-cells play a critical role in mediating effective anti-tumor immunity. However, the mechanisms which program the highly proliferative and functional state of CD8+ T-cells are not completely understood. We hypothesized that IL-12, a cytokine commonly induced by TLR activation, could enhance T-cell priming by altering responsiveness to antigen and cytokines. Priming of tumor specific CD8+ T-cells in the presence of IL-12 induced the acquisition of a 'polyfunctional' effector response and increased the generation of memory cells. Moreover, IL-12 priming also promoted high levels of the IL-2 receptor alpha-chain (CD25) and robust IL-2 mediated activation of STAT5. This sensitivity to IL-2 translated into enhanced in vivo proliferation of adoptively transferred CD8+ T-cells. Furthermore, real-time, in vivo imaging of T-cell trafficking confirmed the ability of IL-12 priming to drive in vivo proliferation. IL-12 priming enhanced the anti-tumor function of adoptively transferred cells by reducing established subcutaneous tumor burden, and significantly increasing survival in an established intracranial tumor model. Finally, IL-12 priming of human PBMCs generates tumor specific T-cells phenotypically and functionally similar to IL-12 primed Pmel-1 T-cells. These results highlight IL-12 as an important mediator of CD8+ T-cell effector function and anti-tumor immunity.
Enhanced sensitivity to IL-2 signaling regulates the clinical responsiveness of IL-12-primed CD8(+) T cells in a melanoma model.
Sex, Specimen part, Treatment
View Samples