Expression profiles of Drosophila melanogaster in response to ionizing radiation, formaldehyde, toluene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Overall design: RNA-seq analysis on 25,415 transcripts to measure the change in gene expression in males and females separately. An analysis of the genes unique to each treatment yielded a list of genes as a gene expression signature. In the case of radiation exposure, both sexes exhibited a reproducible increase in their expression of the transcription factors sugarbabe and tramtrack.
Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation.
Age, Cell line, Treatment, Subject
View SamplesThe tumor suppressor protein 53BP1, a pivotal regulator of DNA double-strand break (DSB) repair, was first identified as a p53-interacting protein over two decades ago, however its direct contributions to p53-dependent cellular activities remain undefined. Here, we reveal 53BP1 stimulates genome-wide p53-dependent gene transactivation and repression events in response to ionizing radiation (IR) and synthetic p53 activation. 53BP1-dependent p53 modulation requires both auto-oligomerization and tandem-BRCT domain mediated bivalent interactions with p53 and the ubiquitin-specific protease USP28. Loss of these activities results in inefficient p53-dependent cell-cycle checkpoint and exit responses. Furthermore, we demonstrate 53BP1-USP28 cooperation to be essential for normal p53-promoter element interactions and gene transactivation-associated events, yet dispensable for 53BP1-dependent DSB repair regulation. Collectively, our data provides a mechanistic explanation for 53BP1-p53 cooperation in controlling anti-tumorigenic cell fate decisions, and reveal these activities to be distinct and separable from 53BP1’s regulation of DNA double-strand break repair pathway choice. Overall design: We evaluated the transcriptional profiles of two 53BP1? cell lines and included a positive (WT) and a negative (p53?) controls. These cell lines were treated with Nutlin-3, ionising radiation or mock treated. Three independent replicates were included for each independent condition generating a total of 36 samples.
53BP1 Integrates DNA Repair and p53-Dependent Cell Fate Decisions via Distinct Mechanisms.
Cell line, Treatment, Subject
View SamplesSteer spleen transcriptome
Profile of the Spleen Transcriptome in Beef Steers with Variation in Gain and Feed Intake.
Specimen part
View SamplesFollistatin is a folliculogenesis regulating protein that has been found in relatively high concentration in the female ovarian tissues. Follistatin acts as an antagonist to the function of Activin, which is often found elevated in ovarian carcinogenesis and thus presents a possibility for therapeutic intervention in controlling ovarian cancer. Most of the ovarian cancer occurs in its ovarian surface epithelium (OSE) cells. Although breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor for breast cancer but its role in ovarian cancer is beginning to unfold. We have shown that in ovarian carcinoma cells (SKOV3), stable overexpression of BRCA1 stimulates Follistatin secretion and simultaneously downregulates Activin expression. Moreover, knock down of BRCA1 in immortalized OSE (IOSE) cells from human ovarian tissue demonstrates downregulation of Follistatin secretion with simultaneous up regulation of Activin expression. IOSE cells generated from an ovarian cancer patient with BRCA1 mutation failed to secrete Follistatin in the medium. Our results indicate a novel function for BRCA1 in the form of regulation of the expression of Follistatin in the ovarian cells.
BRCA1 regulates follistatin function in ovarian cancer and human ovarian surface epithelial cells.
Specimen part, Cell line
View SamplesWe analysed the translatome and transcriptome of Arabidopsis thaliana Col-0 WT at five distinct physiological states during seed germination.
Extensive translational regulation during seed germination revealed by polysomal profiling.
Specimen part, Time
View SamplesTo identify genes heretofore undiscovered as critical players in the biogenesis of teeth, we have used microarray gene expression analysis of the developing mouse molar tooth (DMT) between 1 and 10 days postnatal to identify genes differentially expressed when compared to 16 control tissues (GEO accession # GSE1986). Of the top 100 genes exhibiting increased expression in the DMT, 29 were found to have been previously associated with tooth development. Differential expression of the remaining 71 genes not previously associated with tooth development was confirmed by qRT-PCR analysis. Further analysis of seven of the latter genes by mRNA in situ hybridization found that five were specific to the developing tooth in the craniofacial region (Rspo4, Papln, Amtn, Gja1, Maf). Of the remaining two, one was found to be more widely expressed (Sp7) and the other was found to be specific to the nasal serous gland, which is close to, but distinct from, the developing tooth (Vrm).
Identification of novel genes expressed during mouse tooth development by microarray gene expression analysis.
Sex, Specimen part
View SamplesHere we provide fundamental insights into early human development by single-cell RNA-sequencing of human and mouse preimplantation embryos. We elucidate conserved transcriptional programs along with those that are human-specific. Importantly, we validate our RNA-sequencing findings at the protein level, which further reveals differences in human and mouse embryo gene expression. For example, we identify several genes exclusively expressed in the human pluripotent epiblast including the transcription factor KLF17. Key components of the TGF-ß signaling pathway including NODAL, GDF3, TGFBR1/ALK5, LEFTY1, SMAD2, SMAD4 and TDGF1 are also enriched in the human epiblast. Intriguingly, inhibition of TGF-ß signaling abrogates NANOG expression in human epiblast cells, consistent with a requirement for this pathway in pluripotency. Although key trophectoderm factors Id2, Elf5, and Eomes are exclusively localized to this lineage in the mouse, the human orthologues are either absent or expressed in alternative lineages. Importantly, we also identify genes with conserved expression dynamics including Foxa2/FOXA2, which we show is restricted to the primitive endoderm in both human and mouse embryos. Comparisons of the human epiblast to existing embryonic stem cells (hESCs) reveals conservation of pluripotency but also additional pathways more enriched in hESCs. Our analysis highlights significant differences in human preimplantation development compared to mouse and provides a molecular blueprint to understand human embryogenesis and its relationship to stem cells. Overall design: Single-Cell RNA-seq
Defining the three cell lineages of the human blastocyst by single-cell RNA-seq.
No sample metadata fields
View SamplesPrecise control of mRNA decay is fundamental for robust yet not exaggerated inflammatory responses to pathogens. Parameters determining the specificity and extent of mRNA degradation within the entire inflammation-associated transcriptome remain incompletely understood. Using transcriptome-wide high resolution occupancy assessment of the mRNA-destabilizing protein TTP, a major inflammation-limiting factor, we qualitatively and quantitatively characterize TTP binding positions and functionally relate them to TTP-dependent mRNA decay in immunostimulated macrophages. We identify pervasive TTP binding with incompletely penetrant linkage to mRNA destabilization. A necessary but not sufficient feature of TTP-mediated mRNA destabilization is binding to 3’ untranslated regions (UTRs). Mapping of binding positions of the mRNA-stabilizing protein HuR in activated macrophages revealed that TTP and HuR binding sites in 3’ UTRs occur mostly in different transcripts implicating only a limited co-regulation of inflammatory mRNAs by these proteins. Remarkably, we identify robust and widespread TTP binding to introns of stable transcripts. Nuclear TTP is associated with spliced-out introns and maintained in the nucleus throughout the inflammatory response. Our study establishes a functional annotation of binding positions dictating TTP-dependent mRNA decay in immunostimulated macrophages. The findings allow navigating the transcriptome-wide landscape of RNA elements controlling inflammation. Overall design: Experiment comparing RNA decay rates in WT and TTP-/- macrophages at LPS 3 h and 6 h. Transcription was blocked with actinomycin D for 0, 45 or 90 min. Decay rates was calculated using linear model.
Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution.
Specimen part, Cell line, Subject, Time
View SamplesSuccinate semialdehyde dehydrogenase (SSADH) deficiency is a rare autosomal recessive disorder effecting approximately 350 people around the world. Patients suffering from SSADH deficiency experience language acquisition failure, memory deficiencies, autism, increased aggressive behaviors, and seizures. There is a chemical buildup of both gamma-aminobutyric acid (GABA) and gamma-hydroxybutyric acid (GHB) in the neurological system of these patients. The Aldh5a1-/- knock out mouse model of SSADH deficiency shows the same chemical imbalances as the human disease, with additional fatal tonic-clonic seizures at three weeks of age. The elucidation of seizure causing pathways will facilitate treatment of seizure phenotypes in diseases with related epilepsy.
Expression profiling reveals multiple myelin alterations in murine succinate semialdehyde dehydrogenase deficiency.
No sample metadata fields
View SamplesRNA sequencing (RNA-Seq) was performed on rumen papillae from 16 steers with variation in gain and feed intake. Overall design: Sixteen rumen papillae samples were sequenced by Cofactor Genomics (St.Louis, MO).
Transcriptome differences in the rumen of beef steers with variation in feed intake and gain.
Specimen part, Subject
View Samples